Executive Summary - Highlights

• **Issue Identified**
 Timing Outage issue was raised at the NRSC quarterly meeting (11/’01)

• **Charter**
 Investigate the recent Timing Outages in order to determine:
 – Root cause(s)
 – Identify existing Best Practices that, if implemented, might have prevented the outages
 – Identify new Best Practices
 – Report to the Committee about recommendations to Service Providers, Network Operators and Equipment Vendors

• **Task Group Recommendations to the Committee**
 – Accept the proposed three new Best Practices
 – Communicate the three new Best Practices and the office inspection recommendations to the industry
 – Refer the applicable existing BP for further review consideration

• **Further Action**
 – Mission completed as per charter
 – NRSC should continue to monitor timing related outages
Executive Summary - Impact of Timing Outages

9.4% of all Outages were from Timing Outages

2000-01 Total Outages

91% Timing Outage
9% Other Outage

2000-01 CCS7 OUTAGES

67% Other Outages - CCS7
33% Timing Outages - CCS7

CCS7 Outages were 15% of All Outages

33% of all CCS7 Outages were Timing Outages
Executive Summary - Impact of Timing Outages (cont’d)

- BITS Failures cause significant number of office outages
 - Many Timing Outages were not reported as ‘Alarmed’
 - CCS7 Alarms are often the 1st indication of a BITS Outage
- BITS Related Outages
 - Lack Diverse Links to Redundant ‘Timing Output’ Cards
 - Failure to switch to Redundant Timing Output Card
 - BITS ‘Clock Input’ card failure (e.g., Stratum 2 or 3)
- Procedural and Craft Activity Error
 - BITS Upgrades failures
 - Dual BITS Fuse Outage
- Power Failure causing office Timing Outages
- No BITS Clock in Office

2000-01 Timing Outages - Categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BITS Related</td>
<td>33%</td>
</tr>
<tr>
<td>Craft Activity</td>
<td>28%</td>
</tr>
<tr>
<td>Power Outage</td>
<td>28%</td>
</tr>
<tr>
<td>Other Equipment</td>
<td>3%</td>
</tr>
<tr>
<td>No BITS Clock</td>
<td>8%</td>
</tr>
</tbody>
</table>

Executive Summary – Recommendations

• Propose that the NRSC recommend that Service Providers and Network Operators conduct office inspections of BITS and intra-office facilities on a priority basis.

• Propose Three New Best Practices:
 – Network Operators and Service Providers should insure that engineering, design, and installation processes address how new network elements are integrated into the office synchronization plan
 – Network Operators and Service Providers should develop management and records keeping tools that accurately track the diversity of internal wiring for office synchronization, including timing leads and power
 – Network Operators and Service Providers should conduct periodic verification of the office synchronization plan and the diversity of timing links, power feeds and alarms
Recommendations: Office Inspections & New Procedures

• Upgrade all **BITS clocks** to models capable of **full A/B Power redundancy**

• Verify that **BITS is on fully protected power** (UPS) with generator, and fed separately (A/B)

• If **D4 channel banks** are used for transporting common channel signaling, there are **special timing considerations**:
 – Redundant SS7 links should be timed from redundant timing sources (e.g., from different BITS timing output cards).
 » Typically, all D4 Shelves (e.g., six) can be ‘daisy chained’ with same BITS clock lead. As such, the redundant SS7 Links should terminate on Bays or Shelves with different timing sources

• **Periodic tests for BITS switchover** should be executed where applicable
 – Power (A/B)
 – Input (redundant Clock cards)
 – Output (redundant Timing Output cards)
 – Alarms (e.g., power, input, output, fuse)

• A **one-time physical audit of timing redundancy**, with special attention to SS7 link diversity should be conducted

• **Any outages**, which are determined to have the BITS clock as a contributing cause; whether supplier/service provider/other attributable, should be **shared with the BITS clock supplier** to assist that supplier in improving the quality of their product
NRSC Task Group – Timing Outages: Agenda

• Team Membership

• Team Charter

• BITS Clock (overview)

• 2000-01 Timing Outages - Analysis

• Recommendations
NRSC Task Group Members - Timing Outages

Rick Canaday/AT&T
Wayne Chiles/Verizon
Jim Lankford/SBC
Archie McCain/BellSouth
Karl Rauscher/Lucent
Jim Runyon/Lucent
Whitey Thayer/FCC
NRSC Task Group – Timing Outages: CHARTER

Investigate the recent Timing Outages in order to determine:

– Root cause(s)

– Identify existing Best Practices that, if implemented, might have prevented the outages

– Identify new Best Practices

– Report to the Committee about recommendations to Service Providers, Network Operators and Equipment Vendors
Building Integrated Timing Source (BITS)

Conceptual Drawing and Functionality

BITS Clock

- **Stratum 1, 2E, 2, 3**
 - Normal Operation: Clock Reference from Network
 - Stand-Alone Operation: Clock maintains precision (e.g., ST2, ST3)

- **Shelf Powering**
 - Full Protect DC Powering (-48VDC) SHOULD BE Required (UPS + Generator)
 - Redundant (A/B) power SHOULD BE required
 - Note: Duplex Fuse Outage disables BITS clock (equivalent to total power outage)

- **Redundancy**
 - Stratum Clock MUST BE redundant – should ‘fail over’ gracefully and with Alarms
 - Timing Output (TO) cards MUST BE redundant
 - Redundant Network Element Timing Leads must terminate on separate Timing Output Cards
 - Special diversity strategies may be required to handle unique timing applications
 - Special Office Configuration issues
 - D4 bays are often supported with a single timing lead. Any redundant facilities (e.g., SS7 links) should terminate on separate D4 shelves with diverse timing leads.

- **Alarming**
 - Loss of Network Reference, Power, CP Outage, Switch to Redundant Pack, ...
2000-2001 Timing Outages – Outage List

Timing Outages Evaluated
- 2000: **20 Outages** (of 203 total outage reports)
- 2001: **16 Outages** (of 181 total outage reports)
- Timing Outage Report Numbers
 - Equivalent ‘FCC Outage’ and ‘NRSC Summary’ Numbers

<table>
<thead>
<tr>
<th>FCC #</th>
<th>NRSC #</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-005</td>
<td>00-1-05</td>
</tr>
<tr>
<td>00-010</td>
<td>00-1-10</td>
</tr>
<tr>
<td>00-057</td>
<td>00-2-10</td>
</tr>
<tr>
<td>00-071</td>
<td>00-2-24</td>
</tr>
<tr>
<td>00-092</td>
<td>00-2-44</td>
</tr>
<tr>
<td>00-101</td>
<td>00-3-02</td>
</tr>
<tr>
<td>00-103</td>
<td>00-3-04</td>
</tr>
<tr>
<td>00-116</td>
<td>00-3-16</td>
</tr>
<tr>
<td>00-121</td>
<td>00-3-21</td>
</tr>
<tr>
<td>00-132</td>
<td>00-3-32</td>
</tr>
<tr>
<td>00-138</td>
<td>00-3-38</td>
</tr>
<tr>
<td>00-162</td>
<td>00-3-60</td>
</tr>
<tr>
<td>00-163</td>
<td>00-3-61</td>
</tr>
<tr>
<td>00-165</td>
<td>00-4-01</td>
</tr>
<tr>
<td>00-169</td>
<td>00-4-05</td>
</tr>
<tr>
<td>00-177</td>
<td>00-4-13</td>
</tr>
<tr>
<td>00-182</td>
<td>00-4-17</td>
</tr>
<tr>
<td>00-185</td>
<td>00-4-20</td>
</tr>
<tr>
<td>00-209</td>
<td>00-4-43</td>
</tr>
<tr>
<td>00-222</td>
<td>00-4-56</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FCC #</th>
<th>NRSC #</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-032</td>
<td>01-1-33</td>
</tr>
<tr>
<td>01-034</td>
<td>01-1-32</td>
</tr>
<tr>
<td>01-058</td>
<td>01-2-19</td>
</tr>
<tr>
<td>01-078</td>
<td>01-2-38</td>
</tr>
<tr>
<td>01-084</td>
<td>01-2-44</td>
</tr>
<tr>
<td>01-090</td>
<td>01-2-49</td>
</tr>
<tr>
<td>01-102</td>
<td>01-3-10</td>
</tr>
<tr>
<td>01-128</td>
<td>01-3-34</td>
</tr>
<tr>
<td>01-130</td>
<td>01-3-36</td>
</tr>
<tr>
<td>01-135</td>
<td>01-3-42</td>
</tr>
<tr>
<td>01-140</td>
<td>01-3-45</td>
</tr>
<tr>
<td>01-155</td>
<td>01-3-60</td>
</tr>
<tr>
<td>01-169</td>
<td>01-4-06</td>
</tr>
<tr>
<td>01-173</td>
<td>01-4-11</td>
</tr>
<tr>
<td>01-176</td>
<td>01-4-08</td>
</tr>
<tr>
<td>01-194</td>
<td>01-4-30</td>
</tr>
</tbody>
</table>
Combined 2000-2001: Timing Outage Summary

<table>
<thead>
<tr>
<th>Total</th>
<th>Sub-Total</th>
<th>Outage Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>BITS Related</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Shelf Clock Card</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Failure - Duplex Failure of Primary & Redundant Timing Output Card</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Failure - Simplex 'Timing Output' card (with both Timing Links)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Failure - in Switching to Redundant 'Timing Output' card</td>
</tr>
<tr>
<td>10</td>
<td>Craft Activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Fuse Outage - Craft Error</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Other - Craft Error</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>BITS conversion (old-to-new)</td>
</tr>
<tr>
<td>3</td>
<td>Power Outage</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Other Equipment</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>No BITS Clock</td>
<td></td>
</tr>
</tbody>
</table>

Key:
- BITS – Building Integrated Timing Source
- TO – Timing Output Card (e.g., Composite Clock)
Timing Outages - Summary

- **66% of Timing Outages were the result of**
 - BITS related
 - Intra-Office Redundancy/Diversity (e.g., facilities, cards, faulty fail-over)
 - Procedural Error by Craft
 - Improper BITS Powering (Commercial and Backup)

- **33% of Timing Outages were from other Network Elements**
 - Unclear if some of these were caused by BITS fail-over problems
Timing Outage – Categories

- Timing Outages impact on CCS7 Outages
- Lack of Alarms for Timing Outages
- BITS Redundancy Issues
- Power Failure causing office Timing Outage failure
- Procedural/Craft Error

Each of the above will be discussed in the following VGs.
CCS7 Outages

33% of all CCS7 Outages were caused by Timing Outages
- 14% BITS related
- 19% Other Timing Outages

• 57 CCS7 Failures in 2000-01
• 19 CCS7 Failures caused by Timing Outages

CCS7 Outages were 15% of All Outages
Timing Outages - Alarms

<table>
<thead>
<tr>
<th></th>
<th>BITS</th>
<th>Network Element</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>(indirect)</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

- Timing Outages/BITS failures are often not alarmed
- CCS7 Alarms are often 1st indication of a Timing Outage

Caution: Alarm conditions are not always clearly stated in outage report
BITS Related Outages

BITS Redundancy Issues

- Lack of diverse links to redundant ‘Timing Output’ cards
 - Both SS7 Timing Links on same Timing Card

- Failure to switch to Redundant Card
 - Timing Output Card
 - Clock Input Cards

<table>
<thead>
<tr>
<th>Total</th>
<th>Sub-Total</th>
<th>Outage Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>BITS Related</td>
<td>28%</td>
</tr>
<tr>
<td></td>
<td>Shelf Clock Card</td>
<td>33%</td>
</tr>
<tr>
<td></td>
<td>Failure - Duplex Failure of Primary & Redundant Timing Output Card</td>
<td>28%</td>
</tr>
<tr>
<td></td>
<td>Failure - Simplex 'Timing Output' card (with both Timing Links)</td>
<td>8%</td>
</tr>
<tr>
<td></td>
<td>Failure - in Switching to Redundant 'Timing Output' card</td>
<td>3%</td>
</tr>
</tbody>
</table>
Timing Outages caused by Power Outages

- POWER FAILURES causing Timing Outage
 - 8% of all Timing Outages
 - No Backup Power

- BITS shelf MUST BE on ‘Full Protect’
 - UPS and Generator
Timing Outages: Procedural Error

- BITS Shelf upgrade failure
 - Removing timing leads (wires)
 - Clock Input Card Upgrade (to Stratum 2)
 - BITS enhancement (adding dual power feeds)
- Dual BITS shelf fuse outage
 - Clearing Rack Space -> Power outage (Fuses)
 - Shorting backplane causing Duplex Fuse Outage
 » Plastic protective shield was removed
- Faulty Method Of Procedure (MOP)
 - BITS Shelf Replacement
 - Lack of Training/Supervision
- Installation of New Equipment (non-BITS) – Indirect Cause
 - Installation of fuse panel, power supply & cable removal
- Other craft activity
 - Disabling BITS backplane pins
Timing Outages – Other Concerns

• D4 Channel Banks Configurations

• BITS Clock Fail-Over Concern

• Intra-Office Diversity or Redundancy

Each of the above will be discussed in the following VGs
Timing Outages – D4 Channel Bank Concerns

• D4 – BITS Issues
 – Many SS7 links are transported through D4 equipment
 – D4 Shelves can only take a single timing link (No Redundant Timing)
 – Multiple D4 Shelves (or Bays) can be fed by a single timing link
 – If SS7 links are transported through D4 shelves that are timed from the same timing source, then the office is subject to being isolated with a simplex BITS failure

• Five (5) outages explicitly stated D4 impact (14%)
 » 00-209
 » 01-032
 » 01-130
 » 01-169
 » 01-194
Timing Outages are caused by:

- Terminating SS7 Links on equipment that is timed from the same BITS Timing Output card
- Lack of Redundant BITS Timing Output cards
- Failure to switch (or ‘Fail-Over’) to redundant pack
- Termination both SS7 Timing Links on same D4 bay
 - A D4 Channel Bank supports only simplex timing
- Lack of ‘Full Protect’ Power to BITS shelf
Applicable Existing Best Practices – NRIC V

<table>
<thead>
<tr>
<th>NRIC V BP No.</th>
<th>NRIC V BP No.</th>
<th>NRIC V BP No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-501</td>
<td>5-583</td>
<td>5-680</td>
</tr>
<tr>
<td>5-509</td>
<td>5-588</td>
<td>5-682</td>
</tr>
<tr>
<td>5-510</td>
<td>5-589</td>
<td>5-683</td>
</tr>
<tr>
<td>5-514</td>
<td>5-590</td>
<td>5-686</td>
</tr>
<tr>
<td>5-528</td>
<td>5-594</td>
<td>5-688</td>
</tr>
<tr>
<td>5-529</td>
<td>5-597</td>
<td>5-692</td>
</tr>
<tr>
<td>5-532</td>
<td>5-600</td>
<td>5-693</td>
</tr>
<tr>
<td>5-540</td>
<td>5-602</td>
<td>5-744</td>
</tr>
<tr>
<td>5-546</td>
<td>5-604</td>
<td>5-745</td>
</tr>
<tr>
<td>5-548</td>
<td>5-605</td>
<td>5-747</td>
</tr>
<tr>
<td>5-549</td>
<td>5-612</td>
<td>5-748</td>
</tr>
<tr>
<td>5-550</td>
<td>5-613</td>
<td>5-749</td>
</tr>
<tr>
<td>5-551</td>
<td>5-615</td>
<td>5-751</td>
</tr>
<tr>
<td>5-552</td>
<td>5-618</td>
<td>5-752</td>
</tr>
<tr>
<td>5-553</td>
<td>5-636</td>
<td>5-753</td>
</tr>
<tr>
<td>5-554</td>
<td>5-637</td>
<td>5-754</td>
</tr>
<tr>
<td>5-557</td>
<td>5-651</td>
<td>5-755</td>
</tr>
<tr>
<td>5-559</td>
<td>5-668</td>
<td>5-756</td>
</tr>
<tr>
<td>5-565</td>
<td>5-678</td>
<td>5-757</td>
</tr>
<tr>
<td>5-567</td>
<td>5-679</td>
<td></td>
</tr>
</tbody>
</table>

- Best Practices are available via NRIC web site: http://www.nric.org
- Recommendation: Refer these existing BP for further review consideration based on Timing Task Force findings
Timing Outage Summary – Recommendations

Office Inspection Recommendation

Develop Three New Best Practices

See Details on Following Pages
Recommendations: Office Inspections & New Procedures

• Upgrade all **BITS clocks** to models capable of **full A/B Power redundancy**

• Verify that **BITS is on fully protected power** (UPS) with generator, and fed separately (A/B)

• If **D4 channel banks** are used for transporting common channel signaling, there are **special timing considerations:**
 – Redundant SS7 links should be timed from redundant timing sources (e.g., from different BITS timing output cards)
 » Typically, all D4 Shelves (e.g., six) can be ‘daisy chained’ with same BITS clock lead. As such, the redundant SS7 Links should terminate on Bays or Shelves with different timing sources

• **Periodic tests for BITS switchover** should be executed where applicable
 – Power (A/B)
 – Input (redundant Clock cards)
 – Output (redundant Timing Output cards)
 – Alarms (e.g., power, input, output, fuse)

• A **one-time physical audit of timing redundancy**, with special attention to SS7 link diversity should be conducted

• **Any outages**, which are determined to have the BITS clock as a contributing cause; whether supplier/service provider/other attributable, should be **shared with the BITS clock supplier** to assist that supplier in improving the quality of their product
Recommendations: New Best Practices

- Network Operators and Service Providers should insure that engineering, design, and installation processes address how new network elements are integrated into the office synchronization plan.

- Network Operators and Service Providers should develop management/records keeping tools that accurately track the diversity of internal wiring for office synchronization, including timing leads and power.

- Network Operators and Service Providers should conduct periodic verification of the office synchronization plan and the diversity of timing links, power feeds and alarms.
BACKUP VGs
2000 Outage Summary – Timing Outages

- 20 Timing Outage Reports (203# Total) – 9.9%
 - 3 BITS related
 » 1 – Failure of Simplex Timing Output Cards (Both links on same TO)
 » 2 – Failure to switch to Redundant Timing Output Card
 - 7 BITS – Craft Activity
 » 4 - BITS Shelf Fuse Outage (craft error)
 » 1 – Other Craft Error
 » 2 - BITS conversion (old to new BITS)
 - 2 Power Outage
 - 8 Other Equipment (e.g., DCS, DACS, Switch)
 » Some of these may have been BITS related (insufficient evidence)

- Outage Impact
 - 11 - SS7 “A” link outage

Note: # 225 Initial Reports before Withdrawals/duplicates
2001 Outage Summary – Timing Outages

• 16 Timing Outage Reports (181# Total) – 8.8%
 – 7 BITS related
 » 2 – Shelf Clock Card (e.g., Stratum 2)
 » 2 – Failure of Redundant Timing Output Cards
 » 2 – Failure of Simplex Timing Output Cards (Both links on same TO)
 » 1 – Failure to switch to Redundant Timing Output Card
 – 3 BITS – Craft Activity
 » 1 BITS Shelf Fuse Outage (craft error)
 » 1 Other Craft Error – Loose Cable
 » 1 BITS conversion (old to new BITS)
 – 1 Power Outage
 – 1 No BITS clock (e.g., Loss of Network Synchronization)
 – 4 Other Equipment (e.g., DCS, DACS, Switch)

• Outage Impact
 – 8 - SS7 “A” link outage

Note:
200 Initial Reports before Withdrawals/duplicates
2000 NRSC – Outage Summary

• Failure Category for 20 Timing Outages:
 » 11 - CCS – Isolation
 » 3 - DCS – Software
 » 1 - DCS – Hardware
 » 4 - Tandem Switch – Hardware, Software, Other
 » 1 - CO Power – DC Distribution

• Root Cause for the Timing Outages
 » 11 - Procedural – Service Provider, Other Vendor
 » 2 - Design – Software; Program Data
 » 1 - Design - Firmware
 » 3 - Design – Hardware; Insufficient Component/Network Redundancy/Diversity
 » 2 - Design – Software Ineffective Fault Recovery/Re-Initialization Action
 » 3 - Hardware Failure (Perf Unit, Other,

• Focus Area for the Timing Outages:
 » 14 - Signal
 » 8 – DCS, Switch
 » 4 – Power
 » 1 – E911
2001 NRSC – Outage Summary

• Failure Category for 16 Timing Outages:
 » 7 CCS – Isolation
 » 3 CCS – Links
 » 3 DCS – Hardware
 » 1 Tandem Switch – Software
 » 2 Hardware Failure
 » 1 ? (01-194)

• Root Cause for the 16 Timing Outages
 » 4 Procedural – Service Provider, Other Vendor
 » 2 Design – Software
 » 1 Design - Firmware
 » 7 Design – Hardware; Insufficient Component/Network Redundancy/Diversity
 » 2 Design – Software Ineffective Fault Recovery/Re-Initialization Action
 » 2 Hardware Failure

• Focus Area for the 16 Timing Outages:
 » 12 Signal
 » 4 DCS