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Foreword 

As a leading technology and solutions development organization, the Alliance for 
Telecommunications Industry Solutions (ATIS) brings together the top global ICT 
companies to advance the industry’s business priorities. ATIS’ 150 member companies 
are currently working to address 5G, cybersecurity, robocall mitigation, IoT, artificial 
intelligence-enabled networks, the all-IP transition, network functions virtualization, 
smart cities, emergency services, network evolution, quality of service, billing support, 
operations, and much more. These priorities follow a fast-track development lifecycle – 
from design and innovation through standards, specifications, requirements, business 
use cases, software toolkits, open source solutions, and interoperability testing. 

ATIS is accredited by the American National Standards Institute (ANSI). ATIS is the North 
American Organizational Partner for the 3rd Generation Partnership Project (3GPP), a 
founding Partner of the oneM2M global initiative, a member of the International 
Telecommunication Union (ITU), and a member of the Inter-American 
Telecommunication Commission (CITEL). For more information, visit www.atis.org.  

http://www.atis.org/
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Notice of Disclaimer and Limitation of Liability  

The information provided in this document is directed solely to professionals who have 
the appropriate degree of experience to understand and interpret its contents in 
accordance with generally accepted engineering or other professional standards and 
applicable regulations. No recommendation as to products or vendors is made or should 
be implied.  

NO REPRESENTATION OR WARRANTY IS MADE THAT THE INFORMATION IS 
TECHNICALLY ACCURATE OR SUFFICIENT OR CONFORMS TO ANY STATUTE, 
GOVERNMENTAL RULE OR REGULATION, AND FURTHER, NO REPRESENTATION OR 
WARRANTY IS MADE OFMERCHANTABILITY OR FITNESS FOR ANY PARTICULAR 
PURPOSE OR AGAINST INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. ATIS 
SHALL NOT BE LIABLE, BEYOND THE AMOUNT OF ANY SUM RECEIVED IN PAYMENT BY 
ATIS FOR THIS DOCUMENT, AND IN NO EVENT SHALL ATIS BE LIABLE FOR LOST 
PROFITS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES. ATIS EXPRESSLY 
ADVISES THAT ANY AND ALL USE OF OR RELIANCE UPON THE INFORMATION 
PROVIDED IN THIS DOCUMENT IS AT THE RISK OF THE USER. 

NOTE - The user’s attention is called to the possibility that compliance with this standard 
may require use of an invention covered by patent rights. By publication of this standard, 
no position is taken with respect to whether use of an invention covered by patent rights 
will be required, and if any such use is required no position is taken regarding the validity 
of this claim or any patent rights in connection therewith. Please refer to 
[http://www.atis.org/legal/patentinfo.asp] to determine if any statement has been filed 
by a patent holder indicating a willingness to grant a license either without 
compensation or on reasonable and non-discriminatory terms and conditions to 
applicants desiring to obtain a license. 
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1. Introduction 

Artificial intelligence (AI) and machine learning (ML) have been active areas of research 
and development since the 1950s. Over time, enthusiasm has waxed and waned as AI 
has struggled to insert itself into mainstream commercial applications. However, in 
recent years, advances in processing power, the availability of large amounts of data, 
research advances and a healthy community of open source developers have enabled AI 
technologies to become an essential part of many industries. In recognition of this 
success, this report explores how AI and ML can be leveraged to address the pressing 
challenges facing the ICT industry today. 

1.1 What is AI? 

AI can enable more intelligent and efficient automation. However, AI is much more than 
automation. Automation covers a wide variety of examples. Most people would not label 
basic programmable automation as AI but do recognize AI as the automation of tasks or 
functions which otherwise require human intelligence to execute properly. Alternatively, 
many consider AI to be intelligence exhibited by machines or computational systems 
that perceive their environment and take actions to satisfy an intent. As such, AI can 
enable automation of many routine, well-defined tasks and activities. However, AI’s 
ability to engage active learning while analyzing very large amounts data means it also 
has the ability to orchestrate innovative capabilities that were previously impossible. 

AI is typically considered to be systems that perform some form of reasoning, planning 
or object management, using knowledge as well as perceived information that, in the 
past, required human intervention. In many cases, AI technology can detect subtle 
patterns in data that humans can’t easily identify. Therefore, AI applications can provide 
expert assistance to people responsible for a specific task or function. Leveraging this 
attribute, AI applications span a wide range: 

• Assisted Intelligence – Targeted/narrow expert systems that help people to 
perform tasks faster and more accurately. 

• Autonomous Intelligence – Fully automated decision-making processes 
coupled with ML to perform a narrow task without human intervention while 
adapting to changing conditions. 
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Figure 1 illustrates how AI, ML, neural networks and deep learning concepts are related 
yet distinct.  

 

Figure 1 – Key Aspects of Artifical Intelligence 

AI technology can be broadly categorized as all possible approaches for simulating 
intelligence, including: 

• Rules-based approaches with an inference engine or semantic reasoner. 
• Algorithms, dependency graphs and other expert system technologies. 
• Neural networks. 

In practical AI systems, these technologies are often supplemented by traditional 
software coding techniques to: 

• Manage the AI system. 
• Preprocess data used to drive the AI system. 
• Implement output adapters to effectively use the decision or recommendation 

output. 
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Many forms of AI incorporate ML techniques to enable the AI systems to better adapt to 
a complex and potentially dynamic environment. ML involves training or data acquisition 
that can modify machine behavior and comes in many forms: 

• Supervised learning occurs when the AI system is given training data sets where 
the desired output is known. The AI system then uses these data sets to learn to 
provide the desired output corresponding to the known input. With sufficient 
training, the system can then provide the correct output with inputs that differ 
from the training sets. Essentially, the AI system can interpolate the correct 
output with high probability given a properly constructed training set. 

• Unsupervised learning is a type of ML where the system autonomously 
categorizes or describes the structure of "unlabeled" data. For example, 
unsupervised learning could be used to recognize patterns in the data to 
describe or categorize different states or conditions of a network. This 
information can then be used to identify anomalies. Supervised learning may be 
used to establish the initial state for unsupervised learning in AI systems. 

• Reinforcement learning occurs when the system learns by interacting with its 
environment. For example, the system may receive rewards for performing 
correctly and penalties for performing incorrectly. These rewards are then used to 
enable ML, modifying future output predictions. Although in general 
reinforcement learning systems can be very complex, many network AI 
applications are well suited to this technology because networks currently 
provide a wealth of real time performance and quality metrics that can be used as 
feedback to the system. 

• Online learning occurs when data becomes available in a sequential order and is 
used to update the model for future prediction in steps, as opposed to batch 
learning techniques, which operate on the entire training data set at once. Online 
learning is useful when the data set is very large, making it computationally 
infeasible to train over the entire dataset, or when the data are generated as a 
function of time. Both of these conditions are common to network data. 

Neural networking is a specific class of AI ML systems that has been the focus of recent 
research advances. Use of various specialized algorithms and rules-based approaches 
often provide controllable deterministic results but have not been able to scale in cases 
where complex relationships exist which create very large numbers of potentially 
conflicting rules. Neural networks have shown promise in addressing complex data 
relationships. 
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A neural network is commonly comprised of columns (or layers) of nodes (representing 
artificial neurons). Each node receives a real-number signal from the outputs of the 
nodes in the previous layer. Each of these inputs has a weight that adjusts as learning 
proceeds, modifying the effect that input can have on that node’s output. The output of 
each node is calculated by a non-linear function of the sum of its inputs. Artificial 
neurons (nodes) may be configured so that a signal is sent only when the aggregate 
signal crosses a certain that threshold. Different layers may perform different kinds of 
transformations on their inputs. Learning is accomplished by adjusting the weights and 
potentially the node thresholds at each layer in the neural network. Each layer or column 
of a neural network may represent a “layer of abstraction.” Unlike many rules-based AI 
algorithms, AI neural networks often create outputs where humans cannot easily reason 
a clear justification.   

Deep learning generally applies to large neural networks with thousands of hidden 
layers, wherein training occurs on each layer within the hidden nodes of a neural 
network. In recent years, deep learning neural networks have become the most 
promising approach to AI. 

AI ML is also a key enabler for intent-based networking, where human administrators 
define the network’s desired outcome in broad but descriptive terms. However, actual 
network management and operations are done using automated network orchestration 
and management systems that implement the desired intent of the expressed policies. 
Intent-based networking systems monitor, detect and react in real time to changing 
network conditions while automatically orchestrating new customer service deployments 
and configuration changes. With intent-based networking, it is often useful to think of AI 
as standing for automated intent rather than artificial intelligence. 

1.2 Role of AI in Telecommunications 

For network operators, there are two large classes of AI applications: those that run over 
the network for the benefit of an end user, and those that run within the network to 
optimize some aspect of network operation or management. Over-the-top (OTT) AI 
applications may place specific requirements on network performance and may be 
enhanced by specific network services. Network AI could be used to replace or enhance 
network planning, service deployment and management functions (typically operating 
with a long time constant). It also could be used in near-real time to dynamically 
optimize network performance based on rapidly changing traffic patterns.   
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A more detailed analysis of network AI application classes is given in the next section. 
Table 1 summarizes how AI systems are often fundamentally different from traditional 
software systems and as such, may require fundamentally new processes at each stage of 
the application lifecycle. 

Traditional Software Systems AI Systems 
Excellent for applying well-defined 
requirements on structured data: 

• Produces deterministic results with 
efficiency and high 
capacity/performance. 

• Resulting actions can be traceable to 
code (and often to requirements). 

Excellent for applying cognitive 
processing on unstructured information 
where problems may be ill defined and 
solutions probabilistic: 

• Errors will occur. Need mitigation 
strategies and clear assignment of 
responsibility. 

• Why AI produces a result may not be 
understood. 

Purpose programmed to provide a 
specified function with well-defined 
features. 

Use a specific platform/architecture with 
one or more AI technologies/libraries 
creating models tuned with supervised or 
unsupervised ML. 

Well-known integration and testing tools 
and methods. 

New processes to manage training and 
how the results might be utilized. 

 

Although AI systems are excellent for applying cognitive1 processing to complex 
systems, errors will occur. For network operators, very high levels of reliability and service 
availability are required because the financial consequences of network outages are 
often significant. 

                                                 

1 Cognition is the process of acquiring knowledge through thoughts, experiences and senses. 
When applied to AI, cognitive processing includes the techniques used to simulate these human 
functions in electronic compute environments such as rules-based approaches with an inference 
engine or semantic reasoner, algorithms, dependency graphs or neural networks. 
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It is well known that AI algorithms may produce incorrect results in unexpected ways.  
Even when the AI decision process involves human engagement, decisions produced by 
AI systems may not be intuitively clear to people tasked to manage those systems.  

A number of mitigation strategies exist to balance the need for high network 
performance and efficiency expected with AI-supported network systems while taking 
into consideration the possibility of occasional errors: 

• Solutions can include redundant systems that may independently apply different 
AI solutions, or different combinations of AI and conventional algorithm-based 
automation and act only if outputs are within a certain level of agreement. 

• AI systems can be segmented so that intermediate results can be verified. For 
example, the system may be decomposed into separate modules so that 
intermediate data-points are available for verification and traceability. 

• Supporting AI systems can be created that are specifically designed to better 
explain the output of the core AI system that is providing a decision or 
recommendation. 

• Output systems can be created to allow policy-based thresholds and limits, 
managed by people, to ensure the AI system cannot deviate too far from the 
norm. For example, the system can be designed to require human 
intervention/oversight if AI decisions cross certain thresholds (e.g., when changes 
to network parameters exceed a certain percentage or if the financial impact of a 
decision is very large). 

• Operators can apply best practices from within the industry, as well as other 
industries (e.g., self-driving cars, AI stock trading automation and AI medical 
diagnostic applications). 

Even with such risk mitigations in place, the introduction of AI technology to service 
provider networks is likely to start with more confined AI expert/recommendation 
systems and AI applications where people have some level of control over the output. As 
confidence builds, there likely will be many AI applications working autonomously to 
optimize and manage various network functions. 
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2. AI Network-Related Use Cases 

AI use cases for wide-area network applications can be segmented into two major 
categories, as illustrated in figure 2: management and operations applications, and 
revenue-impacting applications.  

 

Figure 2 – Types of Network Oriented AI Applications 

Management and operations use cases enable AI technologies to increase the network’s 
efficiency, performance, availability, reliability and cost. These use cases can operate 
offline to create recommendations for improved capacity planning, security, service 
deployment, content optimization or performance of real-time actions that may optimize 
radio network performance, provide dynamic traffic management or real-time security 
detection and mitigation. They include automated service management capabilities 
providing traffic flow classification, fault prediction, WAN path optimization, capacity 
management, security, intelligent bandwidth-on-demand and service modification and 
restoration through the automated scaling of virtual network functions (VNFs), as well as 
transport level configuration of links and paths.  

Revenue-impacting AI applications may enable new network services or help monetize 
existing network services and applications though monetizable data insights. For 
example, marketing and information-centric use cases can leverage network data and 
application data, along with opt-in customer preferences and usage, to provide an 
improved user experience. AI technologies can also be used in expert systems to 
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improve customer contact, support, sales activities and overall customer satisfaction. For 
example, AI techniques have the ability to perform service personalization [by?] tracking 
device behavior such as mobility patterns or the types of services the customer uses and 
predicting and applying network characteristics or presenting new services the user 
would enjoy. Additionally, new network services such as distributed cloud, low-latency 
access or new enterprise APIs can be leveraged by third-party providers interested in 
delivering their own AI solutions to network users. Finally, AI can be used to automate 
and orchestrate the deployment of customer service instances, adding new customers or 
customer configuration changes to the network initiated by a service order. 

AI use cases generally span a wide range of complexity and control. Targeted AI 
applications can be used to optimize a specific aspect of a task and may operate as an 
aid or expert system providing insight to human managers making the final decision.  
Alternatively, complex AI use cases exist that may operate with vast amounts of data in 
hierarchical aggregates of AI modules that make real-time decisions independent of the 
human operator. 

The use cases documented below tend to focus on the more sophisticated AI 
applications as these will more likely have impact on network standards and operations.  
These use cases are not intended to be exhaustive but rather a sampling of applications 
that may benefit from the unique value created by AI. 

Many of the AI use cases detailed in this section utilize AI to better optimize aspects of 
network operations, configuration, security or content delivery in the face of a highly 
dynamic traffic environment. While satisfying the demands placed on next-generation 
networks in highly dynamic conditions is a tough challenge, the fact that these networks 
will be highly configurable and programmable will allow the challenge to be faced head-
on. At any instant, there will be a set of demands, or stimuli, placed on the network as a 
result of the resources requested by the diverse applications used by various subscribers 
in the multitude of locations. In principle, there will be ways of configuring the network 
in a variety of dimensions to most optimally service those requirements while respecting 
any constraints and simultaneously optimizing the network’s non-service characteristics. 
Distilling the problem down to its simplest terms, there are several components to the 
challenge: 

• A set of stimuli in the form of the demands placed on the network by the subscribers 
and devices attempting to use it. 



 

9 
 

• A set of constraints that must be respected, including capabilities and capacities of 
network elements, and impairments to network infrastructure. 

• A set of desired performance characteristics for the applications being used by the 
network’s subscribers. 

• A set of network parameters that must be configured in response to the stimuli, while 
respecting the constraints, to completely satisfy the desired performance 
characteristics. 

AI models can be constructed to identify and diagnose adverse conditions and classify 
them in categories such as congestion, interference, loss of transport link, loss of 
network element or loss of coverage. AI models could also be used to make predictions 
about these states in the future, so the network could be prepared to mitigate the 
problem before it occurs. These are models that offer support to the engineers operating 
the network.   

With more ambition, AI models can be conceived that directly link the network 
conditions in terms of the demands, constraints and impairments. Such models could 
combine these characteristics with the parameter configurations and predict the 
resulting performance and thus be employed to understand how well any set of 
configuration parameters would satisfy the desired performance characteristics. Such 
models would be valuable for predicting how suitable any proposed parameter 
configurations would be for satisfying the desired performance characteristics. Indeed, a 
model (or multiple models) could predict the specific set of parameter configurations 
that best satisfy the desired performance characteristics. If such models could be built 
and integrated with the network, it could form the heart of the decision-making in the 
network. 

2.1 Network Anomaly Detection 

Story Highlights 

A large cellular service provider’s network can generate several million performance 
measurements every minute. Some of these events can have common signatures during 
network outages. Data-powered ML can be applied to correlate these signatures with 
network anomalies. 



 

10 
 

This large volume of data can be processed by a network anomaly detection ML system 
using an AI data processing platform. ML algorithms can be applied to this data to 
correlate the signatures with network anomalies. ML algorithms can be used to correlate 
the data and determine patterns that can be presented visually using various ML 
applications. To support network anomaly detection, ML models can be created, on-
boarded, trained, executed and shared using, for example, the Acumos AI platform and 
marketplace (see section 3.2). 

Business Drivers 

Finding a network anomaly in millions of events is like looking for a needle in a haystack. 
Network operations personnel spend countless hours searching for network anomalies 
and pinpointing the root cause. ML is ideally suited to analyze such a large amount of 
data to identify a small number of network anomalies. Benefits include reduced time and 
cost for resolving network anomalies. 

Deployment Model 

This use case needs the following environments: 

• Development environment to create ML models using a rich set of ML toolkits. 
• Sandbox environment to execute ML models using real-world production data. 
• Production environment to run ML models and realize business benefits. 
• An AI platform and marketplace such as Acumos to share and exchange ML 

models across teams. 

This use case also assumes that network data are available and are of sufficiently large 
size over a large enough time period to detect network anomalies. 

 
Actors 

Key actors associated with this use case include: 

• The network provider, whose organization and systems enable data collection 
and control. 

• Business and individual customers making mobile phone calls on this service 
provider’s LTE network. 
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High-Level Architectural Context 

The management of voice over LTE (VoLTE) calls is a good example of this use case. 
VoLTE calls travel thru the radio access (RAN), mobile packet core and services core 
networks. These calls can fail if an outage hits any one of these three networks, as 
illustrated in figure 3. The service core network can report an outage signature via call 
detail records (CDRs). The proxy – call session control function (P-CSCF) is the first point 
of network entry for making VoLTE calls; hence the P-CSCF usually reports failed CDRs 
for the service core network. CDRs have this outage signature data, which can then be 
used with other network data to better assess service anomalies. 

 

Figure 3 – VoLTE Call Failure Scenario 

Related and Derivative Use Cases 

Unsupervised ML technology is well suited for applications that detect pattern anomalies 
in network data. Proactive anomaly detection can be used to prevent or minimize the 
occurrence of potential future failures by performing preemptive maintenance based on 
the detected anomalies. In optical networks, for example, unsupervised ML has been 
applied to network data to identify trends that suggest aging and future failure of an 
optical port:   
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• First data are collected during normal operation of the optical network to train the 
ML model. 

• Subsequently new incoming data are analyzed over some time period to 
determine their probability of occurrence under normal conditions and the overall 
trend.   

• A risk factor is derived to indicate when preemptive action may be needed to 
avoid a future failure in the optical port. 

In addition, anomaly detection can be utilized in security related use cases for 
applications ranging from the detection of unwanted text messages to caller ID spoofing 
and robocalling mitigation. In the case of unwanted text messages, network AI systems 
can be used to analyze typical text message data patterns and identify text messages that 
differ from normal texting behavior. Caller ID spoofing and robocalling are being 
addressed through the SHAKEN framework as documented in ATIS-1000074, Signature-
based Handling of Asserted information using toKENs (SHAKEN). SHAKEN is an industry 
framework for managing the deployment of secure telephone identity technologies with 
the purpose of providing end-to-end cryptographic authentication and verification of the 
telephone identity and other information in an internet protocol (IP)-based service 
provider voice network. This specification includes a call validation treatment (CVT) 
application server function for applying anti-spoofing mitigation techniques once a 
signature is positively or negatively verified. The CVT can also provide information in its 
response that indicates how the verification results should be displayed to the called user. 
Unsupervised ML anomaly detection technology can be applied within the CVT function 
to better identify and mitigate telephone identity spoofing. 

2.2 Network Security 

Network security and associated cybersecurity threats represent a significant and 
ongoing challenge for the industry as a whole. In the US, interest in this area has been 
heightened by the May 11, 2017, Executive Order on Strengthening the Cybersecurity of 
Federal Networks and Critical Infrastructure. That order called for “resilience against 
botnets and other automated, distributed threats,” directing the Secretary of Commerce, 
together with the Secretary of Homeland Security, to “lead an open and transparent 
process to identify and promote action by appropriate stakeholders” with the goal of 
“dramatically reducing threats perpetrated by automated and distributed attacks (e.g., 
botnets).” The resulting report highlights areas where network/infrastructure security can 
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be enhanced including recommendations to provide the filtering of traffic as it enters 
and exits a network and to deploy other anti-DDoS services. 

The complex landscape of the ever-changing threat environment associated with 
network security provides the opportunity for AI-based solutions to out-perform existing 
network security capabilities. The following use case provides one example of such a 
deployment. 

Story Highlights 

Today’s networks create a significant amount of data used to describe data traffic 
attributes and performance. Some of this data are currently collected for network 
analytics. Additional network data that may be indicative of security-related attacks 
could also be collected. This data could be supplemented by information provided by 
active network probes, data center customers and/or enterprise customers. 

This large volume of data could then be processed by a network security AI system, 
which might then identify potential security issues and isolate the traffic associated with 
these issues to specific ingress (or egress) links. Once identified, it would be possible to 
use network functions virtualization (NFV) and software-defined networking (SDN) 
constructs to instantiate fine-grained anomaly detection and mitigation functions and 
re-route suspect traffic through these functions to increase the potential of successfully 
addressing security threats attacking or passing through the network. The AI system is 
not required to be 100 percent accurate as its purpose is to direct the application of a 
limited number of complex and highly specialized, real-time intensive security functions 
to potentially damaging traffic. 

Business Drivers 

Although security services products are commercially available in the marketplace, 
providers and consumers of network services and applications generally expect that 
network security is built into the products and services they use. In effect, network 
security is substantially a cost center and as such, providing sufficient levels of security at 
the lowest cost is a common goal. Implementing security recommendations often 
requires large capital and operational expenses in the deployment of specialized (and 
ever-changing) security capabilities across the network (e.g., the ability to filter traffic as 
it enters and exits a network and to deploy other anti-DDoS services at these points). 
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A system that first identifies traffic anomalies using existing network data and then 
instantiates specific detection and prevention tools targeted to the identified traffic 
could potentially increase network security at lower cost points. However, to be 
successful, the initial identification of traffic anomalies must be accurate enough to 
thwart a high-percentage of security attacks while limiting the application of expensive 
detection and mitigation functions to a reasonable cost.  

Deployment Model 

This use case assumes the existence of a robust and ubiquitous NFV/SDN infrastructure. 
It is further assumed that NFV data centers are widely deployed with sufficient SDN 
controls to allow traffic at all ingress/egress links to be redirected to an NFV data center 
where appropriate “security scrubbers” can be service-chained into the link. 

This use case could be implemented with fixed (non-virtualized) security assets using 
other mechanisms to dynamically direct traffic through a service chain that includes 
these assets. From an AI perspective, it is not so important how the traffic is segregated 
and treated. Rather, the use case proposes that AI systems be used to identify the traffic 
and associated links, with the assumption that the AI system can dynamically learn new 
threat vectors and more accurately detect both existing and new attacks. 

The use case also assumes that network data are available and enough to detect security 
anomalies and identify an ingress or egress link associated with the traffic. As such, the 
data collection system may: 

• Collect data from all edge routers and gateway elements associated with the 
ingress and egress of traffic. These elements should have the ability to detect and 
report key packet header attributes that can be used to identify potential traffic 
anomalies. 

• Instantiate probes in various places in the network to collect very specific 
security-related metrics and attributes. 

• Collect data from other control and operations systems to enable the AI system 
to understand network topology and potentially the context of the data. 

• Collect data from traffic terminated internal to the network (e.g., DNS traffic) and 
other identifying control information. 

• Support interfaces with enterprises and data center customers of the network to 
enable these entities to provide insight into traffic attributes. These interfaces 
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may use existing standards or may require new standards and/or business 
agreements. 

Actors 

Key actors associated with this use case include: 

• The network provider, whose organization and systems enable data collection 
and control. 

• Enterprise and data center customers who may be originating or terminating 
suspect traffic and who may be able to alert the network provider about this risk. 

High-Level Architectural Context 

An example illustration of the use case in a service provider network environment is 
shown in figure 4.  

 

Figure 4 – A Network AI Security Application 

In considering the deployment of this use case, several questions arise. For example: 

• Do network elements have the necessary capabilities to detect and report 
attributes associated with malicious traffic? 
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• Do network operations and control systems provide enough information to 
correlate the detection of traffic anomalies to enable the traffic to be 
intercepted? 

• Can all this data be sufficiently reduced to enable an AI system of reasonable 
capacity to operate on the data and provide results in sufficient time to limit 
damage associated with an attack? 

• How can this AI system be trained to achieve sufficiently high accuracy? 
• Do network APIs exist to enable the AI system to instantiate specialized detection 

and mitigation functions and route the suspect traffic through these functions? 

Related and Derivative Use Cases 

Related use cases may also engage active probes or other data sources to better detect 
and isolate security anomalies. 

2.3 RAN Optimization 

Moving into the era of 5G, network demands will be driven by new IoT applications, 
public safety organizations requiring highly reliable critical communications and the 
extra data volume from new high-bandwidth services and applications for consumers. 
These demands include increasingly dynamic utilization of the network across various 
dimensions including location, application, subscriber and time. Satisfying the demands 
placed on the network has always been a challenge for wireless network operators, and 
this challenge will magnify in the future. 

RANs provide communication services in a complex and dynamic environment. The 
degree of control offered in the 5G radio network will be unprecedented. As in previous 
generations, there will be parameters that determine the characteristics of the physical 
radio interface. These include transmit power and the orientation of the antennas, some 
of which can be controlled programmatically. It also includes the configuration of the 
parameters controlling user equipment (UE) behavior, such as when and how to make 
and send measurements and how to behave in idle mode. Parameters controlling the 
behavior of the network, such as how the network responds to UE movement and how 
different network layers (carriers and radio technologies) are utilized together, can also 
be configured. The programmability of the network extends to where different network 
functions are located. 



 

17 
 

Therefore, optimization is vital for the network to reach its full potential. From early 
generations of mobile networks, optimization relied to a great extent on manual tuning. 
Support for automatic data recording and network tuning was introduced in 2G 
networks to reduce the manual effort. These early solutions were typically located in the 
central operation and maintenance systems. With the evolution of 4G and a more 
distributed architecture, the automatic functions have also been distributed into the RAN 
nodes. Examples of such automation functions are automatic neighbor relations and 
mobility robustness optimization, which have significantly increased the network 
efficiency. 3GPP has addressed many of these optimizations in its work on self-
organizing networks (SONs). 

The need for automation has been increasing continuously, and so has the development 
of autonomous functions. AI and ML offer the potential to achieve higher levels of 
automation and efficiency in terms of performance, coverage and capacity. The 
challenges lie in utilizing these computationally heavy procedures in near-real-time 
control loops. It is necessary to identify the data of most relevance to design effective 
solutions, which is why domain knowledge is still important.  

Increased compute capabilities in the access network enable distributed AI/ML in smart 
network nodes to avoid extensive signaling to a centralized system and facilitate low-
latency actions. Distributed AI also can simplify multi-vendor interoperability by enabling 
simple interfaces and can automatically adapt connection management to individual 
user service needs. Additionally, user consent and anonymization mechanisms facilitate 
the use of user data for AI-enabled network management to enhance overall user 
experience. 

Story Highlights 

The 3GPP RAN avails a great deal of performance and state information that can be used 
as a basis for RAN optimization. The various performance metrics available enable an 
operator to create a cost function specifically structured to optimize network 
performance consistent with operator goals (often a balance between coverage, capacity 
and overall fairness across the subscriber base). 

Examples of potential RAN state information and performance metrics may include: 
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• RAN cell physical aspects such as topology, spectrum used (number of carriers in 
each band), power levels and cell neighbor relationships including small cell 
overlays within macro cells. 

• Number of active UEs in a cell, along with some measure or indication of UE 
specific traffic characteristics (e.g., voice, data, SMS) and performance. 

• UE signal, interference and noise ratios (or distribution of such) in the cell.  
• Some measure of UE mobility. 
• Measurements of recent UE and/or cell performance including call/session drop 

rates, handover performance, overall packet capacity and performance. 
• Network transport and routing infrastructure metrics indicating packet loss, 

latency and throughput, along with information indicating what applications are 
running on what devices in which subscriber groups and network slices and at 
what locations.   

Additionally, the network operator has control of several parameters that can be used to 
modify RAN network performance dynamically. Examples of potential controls include: 

• Neighbor lists (list of acceptable cell neighbors appropriate for handover). 
• Carrier power levels. 
• Sub-tone power distribution including inter-cell interference management 

profiles. 
• Ability to balance load across frequency carriers on various bands. 
• Functional decompositions of network elements and associated deployment 

options on orchestrated virtualized platforms will dramatically increase the 
programmability and provide additional capabilities to apply AI-based 
optimizations. 

Using network performance and state information, along with historical network data, an 
ML-based AI system can be used to optimize RAN performance, as defined by the 
operator, potentially using non-supervised real-time learning techniques that work to 
minimize a network-data-derived cost function. These AI functions may be centralized, 
distributed to the edge or both. 

Business Drivers 

It is well known that a large percentage of overall network cost exists within the “last 
mile” of access. That is, network cost is dominated within the access network at the 
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boundary between the network and the user device. By optimizing performance of the 
access network, particularly in highly dynamic and uncontrolled environments typical of 
the 3GPP RAN, operators can provide better service to subscribers at lower cost points. 

Addressing a network’s dynamics by configuring multitudes of parameters that operate 
in concert to achieve optimal performance requires intimate knowledge of the network. 
The flexibility in the configuration of the functional elements between the core and the 
radio means that in addition to configuration changes having wide geographic impact, 
the impact will also span the traditional silos of core, transport and RAN. Grasping this 
complexity will place enormous demands on the humans operating the network to 
understand their networks in extraordinary breadth and depth. Finding enough people 
with those skills will be enormously costly.   

Another business driver is revenue growth. The industry aspires to deliver network 
slicing, and this is being defined and standardized in 3GPP, GSMA and other standards 
bodies. This technology will allow different services to be hosted on the same physical 
infrastructure but with logical separation, enabling each logical service to have its own 
heterogeneous quality-of-service (QoS) requirements. For example, an IoT layer may be 
required to achieve deep indoor coverage and long battery life across a very high density 
of devices, but with small data volumes. These are very different characteristics from a 
public safety network that must be highly available and have low latency with very 
dynamic utilization. These both are different from consumers using smartphones who 
typically need high volumes of data and the ability to support a variety of commercial 
applications.  

Network slicing allows these services to be delivered simultaneously on the same 
physical infrastructure and with logical separation, where each slice meets its service level 
agreements (SLAs) and there is prioritization in cases where QoS requirements conflict. 
Network slicing facilitates a market in connectivity with SLA guarantees, which can 
become a new revenue source for operators, underpinning the business case. This 
depends on AI because it is another dimension in the complexity of the next-generation 
network that must be managed, making manual configuration even less practical. 
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Deployment Model 

AI and ML technology can be deployed in the RAN at a variety of layers. As figure 5 
illustrates, RAN automation can take many forms and operate at many levels in the 
network at different time scales. 

 

Figure 5 – RAN Automation Control Loops 

Automation can include activities such as self-configuration, self-optimization and self-
healing. Automation executed in a centralized mode covering a broad physical area 
typically operates at longer time scales. Automation distributed out to the network edge 
can operate very quickly, sometimes at millisecond speeds. Due to the different time 
scales, it is possible to run both automation types simultaneously in the network. 

An AI system operating as a component of network automation will depend on models 
of the network. These models might be partially trained in isolation from the actual 
network in which they are deployed. However, it is anticipated that there also will be a 
significant part of the training that is empirical and based on the actual network 
concerned so that the network’s nuances and specific characteristics can be captured.  
Moreover, these models must be capable of representing situations out of the network’s 
normal operational envelope. This will allow them to effectively handle new types of 
anomalies on demand, previously unseen impairments and other unusual events. 
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Actors 

AI/ML-based RAN automation may include the following actors: 

The network operator decides the commercial objectives for achieving performance in a 
dynamic and non-uniform environment. It sets policy that translates into the goals for 
the automation systems that control the network and how it operates in response to 
demand, impairments and other stimuli. Specific network operator subsystems impacted 
may include: 

• Network operations systems, which may provide both historical and real-time 
operational state and performance metrics. 

• Network operator policies, which may guide or limit automation activities. 
• Network APIs, which enable automated actions. 

Another type of actor is the entities procuring services from the network, especially 
services with SLAs such as network slices. This includes the subscriber-owned UE, which 
may provide additional information related to the state and performance of the RAN 
from a user’s perspective. 

High-Level Architectural Context 

Figure 6 illustrates 3GPP SON configurations for centralized, distributed and hybrid 
architectures. In all cases, automation may be operating in a RAN context that may 
include macro cells and small cells operating in a variety of frequency bands using 
licensed (3G, 4G and 5G), unlicensed or shared air interface standards. 
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Figure 6 – SON Configuration Options 

AI/ML technologies can be used in all approaches, both centralized and distributed, to 
provide enhanced automation results. 

Parts of the functionality of the RAN have been decomposed by 3GPP into a centralized 
unit and a distributed unit. In some cases, these will be VNFs with a choice of where 
these are instantiated. Various factors influence the choice of where to physically locate 
these functions, typically driven by constraints on latency and jitter along with 
transmission costs. For example, these factors include the need for extreme capacity 
delivered by massive MIMO and the need to overcome inter-cell interference through 
coordination of transmissions. How these nodes are associated and the routing between 
them is also a configurable decision that can not only allow the latency and jitter 
required by the services to be achieved but can also enhance the resilience of the 
network to impairments. Some aspects of these networks will be controlled by vendor-
specific parameters, such as how the schedulers work, when and how different network 
layers are used and when handovers are performed. However, some degree of 
configuration will be exposed via APIs, orchestrators or similar entities. 
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2.4 Dynamic Traffic and Capacity Management 

Story Highlights 

Abundant capacity and performance data are available in-service provider networks. 
Typically, a network performance monitoring system might collect metrics such as 
latency, packet loss and throughput on a per-link or per-path basis for every node and 
link in the network every 10-15 minutes. For large networks, this represents a daunting 
amount of data to be analyzed. Additionally, optimal network configuration and routing 
may be time variant to account for time-of-day and day-of-week traffic patterns. 

Given the availability of SDN-controlled traffic routing, advanced transport network 
configuration capabilities and other advanced routing techniques, networks can 
implement dynamic network configuration changes without physical or manual 
intervention. By applying AI techniques to network performance data, an AI system can 
dynamically and automatically (or manually) enable significant changes in network 
configuration to optimize traffic flow and thus minimize network cost while increasing 
network performance and efficiency. 

Business Drivers 

Network topologies and configurations have traditionally been costly and time 
consuming to create, optimize and deploy. While modelling tools are available, they are 
only effective if a network conforms to the tool’s assumptions. Additionally, traffic 
patterns can change dynamically from hour to hour and day to day so that creating an 
“optimal” topology/configuration becomes a quickly moving target. By addressing these 
issues with automation, the network can be made to perform better at lower cost points, 
all of which benefits the network service provider and its customers. 

Deployment Model 

This use case can be deployed in access and metro networks, as well as the core 
backbone in service provider networks. Deployments assume the existence of the 
necessary APIs and control functions to control traffic routing, establish new paths/links 
and reconfigure transport bandwidth. The use case also assumes that network data are 
available and enough to manage traffic in the network. As such, the data collection 
system may: 
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• Collect data from all edge routers and gateway elements associated with the 
ingress and egress of traffic. These elements should have the ability to detect and 
report key traffic performance and capacity metrics such as packet loss, 
throughput and latency. 

• Leverage active probes that may be dynamically instantiated in network data 
centers as needed to monitor critical assets. 

• Collect data from other control and operations systems to enable the AI system 
to understand network topology and potentially the context of the data. 

• Collect data from traffic terminated internal to the network (e.g., DNS traffic) and 
other identifying control information. 

Architectural Context 

Figure 7 illustrates the example use case of a service provider network environment.  

 

Figure 7 –AI Based Network Traffic Management 

In addition to the need for good data collection that can sufficiently assess network 
performance on a granular basis, the AI system must include a robust backend system 
that can implement, in an automated fashion, the network configuration 
recommendations proposed by the AI system. Initially, AI recommendations can be 
forwarded to a control center where people can make the final decision about 
configuration changes and run the appropriate scripts to implement the changes. A real 
concern for this use case is the possibility that network configuration recommendations 
could negatively impact network performance or even take the network down. 
Additionally, it’s possible that an AI recommendation might be good for a majority of 
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users but negatively impact critical systems such as emergency services or SLA-
guaranteed enterprise services. As such, until robust control systems exist to properly 
manage configuration changes in a fully automated fashion, this use case is likely to have 
significant human intervention to implement the recommendations. 

Related and Derivative Use Cases 

AI-based network optimization use cases may also utilize the general architecture an 
operational structure of this use case. Network optimization has been addressed by ATIS 
in past reports including: 

• Network Optimization Focus Group (NetOp-FG) Assessment and 
Recommendations, September 2011, ATIS-I-0000023. 

• Emerging Opportunities for Leveraging Network Intelligence, October 2014, ATIS-I-
0000046. 

• ATIS Big Data Analytics Focus Group: BDA Data Value Chain Reference Model & 
Use Cases, October 2013, ATIS-I-0000043. 

Generally, these reports explored a wide range of network optimization use cases, 
identifying the required service capabilities, various implementation options, regulatory 
considerations and areas recommended for further standards development. The specific 
network optimization use cases addressed in these reports include: 

• Congestion-aware fairness. 
• Subscriber-application-aware network optimization. 
• Network-aware scheduling of content. 
• User rate plans. 
• Reasonable network protection and management. 
• Load- and policy-aware multi-RAN selection. 
• Optimizing sse of wireless non-bearer resources. 
• Network-wide application detection and usage support.  
• Prioritization of traffic for regulatory and enterprise services. 
• Personalized broadband.    
• Public safety spectrum sharing.  
• Enhanced fault resolution. 
• Outage alerting, avoidance and reporting.  
• Network-wide intrusion detection. 
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• NFV automated network growth/degrowth.  
• Inter-datacenter congestion mitigation. 
• RAN-aware time-shifted content delivery.  
• Dynamically inspect traffic and predict network performance. 

In most cases, these use cases utilize a generalized architectural framework wherein 
network data are collected and aggregated via a variety of data sources and data 
analytics systems. The data are then utilized by an optimization application. Finally, the 
recommendations from the application are used to implement configuration changes in 
the network. AI technologies can be applied within this architecture in support of the 
optimization application. In the past, these optimization applications were implemented 
in software and programmed to execute a specific optimization algorithm. Going 
forward, AI systems may replace the bulk of the software to provide a higher level of 
“intelligence” and ML to better optimize the aspect of interest  

Network Resiliency and Self-Healing 

An important derivative use case related to dynamic traffic and capacity management is 
the ability to dynamically respond to network failures and anomalies to provide 
enhanced network resiliency and self-healing. The basic ingredients for this derivative 
use case include the ability to apply AI analysis technology to the mass of network data 
along with: 

• Network topology information. 
• Network orchestration functions to manage SDN-controlled traffic routing, 

advanced transport network configuration capabilities and other advanced 
routing techniques. 

Networks with these capabilities possess the foundation to implement dynamic network 
configuration changes without physical or manual intervention. This would enable the AI 
system to not only dynamically manage network traffic capacity, but also utilize outage 
information in deploying network changes to enable self-healing and resiliency 
capabilities. 

2.5 AI and Orchestrated Management 

Orchestrated management refers to operations that require coordination of activities 
among several network or OSS resources. Examples of orchestration include managing 
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customer orders, implementation of data centers, complex expansion and 
reconfiguration processes. These overall processes have many sub-processes 
(components), which may succeed, fail and/or yield different outcomes. Traditionally, the 
overall process is implemented using a complex workflow that addresses the triggering 
of various activities, exception handling and recovery. 

Story Highlights 

The complexity of such processes typically increases on a higher order (e.g., n2) as the 
number of components grow. After several generations, managing such complexity 
becomes a hindrance in offering new services, modifications of existing services and 
taking advantage of changes in technology and market demand. AI-based approaches 
can alleviate these issues by breaking the complex flows into a number of smaller yet 
more intelligent entities that, with assistance from ML and rule-based programming, can 
significantly simplify the evolution of these flows. The two key elements of AI and ML are: 

• Entities must be independent (each with their own rules). Entities must allow ML 
to influence their “decisions.” 

Business Drivers 

One of the major barriers to new service introduction is complexity of existing 
orchestration processes. New services can require enhancement of operations processes, 
and the complexity of such operations can add cost and delay. Lack of experience with 
new services can result in initial processes that are sub-optimal and must be enhanced, 
causing further delay and cost.   

Deployment Model 

In this deployment model, the complex processes are broken down into smaller 
components (sub-processes). A proper breakdown is key. These partitions must be 
independent, with clear triggers (conditions that activate them) and outcomes (which 
overall state variables they modify). 

The triggers are based on overall “state variables” visible to (but not necessarily used by) 
other modules. The independence requirement is also key in that these modules must be 
able to run from start to finish without waiting for another process to complete (albeit it 
can trigger other processes in the beginning, duration and the end but not be 
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dependent on them for its own completion). Each process may also be invoked several 
times based on the outcome of other steps and go through several iterations until it 
completes. 

The AI aspect arises from the fact that these independent processes each behave 
according to their own rules, which may be written by different developers and/or teams. 
The interaction of these rules can yield solutions that no one has perhaps foreseen. Also, 
as new process components are added, these will bring their own rules and can interact 
with other components in novel ways, as well.   

This can be further enhanced by introduction of ML. As the various solutions are 
produced by the interaction of these independent modules, resulting key performance 
indicators (KPIs) can be fed back to an ML infrastructure to provide additional state 
variables which can be used in triggers and process component operations. This set of 
additional information can influence each component to make decisions more conducive 
to previous successes, trigger more suitable components or both. 

Architectural Context 

Typical implementations include an environment where state variables can be 
communicated among all process components and constantly evaluated to ensure 
proper triggering of process components. It is critical that this infrastructure is 
distributed and efficient in its operations as constant evaluation of activation conditions 
(triggers) requires a near-real-time processing and efficient handling of race conditions 
(e.g., update of the same variable by multiple processes).   

The ML infrastructure is also an enhancement where available. This element requires data 
collection, processing, model development and a connection into the overall state of the 
operation where it can inject/modify state variables to affect the execution of the process 
components. It further must have a learning environment where the outcomes are 
properly modeled so they can be assessed and fed back into the system. 

2.6 AI-Based Subscriber Insights 

AI-based platforms can be used to collect, store and analyze data from across an 
operator’s entire customer base to achieve real-time behavioral insights. Network 
information is aggregated, anonymized and/or combined with consent-based solutions, 
enabling operators to leverage a wealth of information about their customers’ behaviors, 
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preferences and movements to mutual advantage. This information could help cities 
better manage their infrastructure, help businesses reach customers more likely to have 
interest in the products and services being offered or help health officials track diseases. 
More specific examples include: 

• The creation of demographic information about how users arrived at a specific 
event/location and/or the kinds of applications they use once they arrive. These 
insights provide more efficient and effective event planning and management 
functions. 

• The creation of location- and time-dependent data traffic profiles that city 
planners may use to better manage vehicular traffic flows, as well as by local 
businesses to facilitate user awareness of local products and services. 

• Enhanced advertising effectiveness by better matching the types of ads delivered 
to user preferences and observed behaviors. 

• The creation of advanced analytics analysis for systems of connected machines 
that can be used for anomaly detection, diagnostics, forecasting and other 
optimizations. 

In all of these cases, we assume that either the user privacy policy enables the sharing of 
anonymous and aggregated subscriber data with outside parties and/or explicit consent 
to use data has been acquired. 

Story Highlights 

In many cases, a significant network data collection and analytics system may already be 
in place to support a variety of network traffic management, capacity planning and 
optimization use cases. This data infrastructure, used in combination with AI-based 
application functions, can create a variety of offline insights. This information may be 
valuable to cities and governmental agencies, health care organizations and businesses 
to better manage infrastructure, operations or support more effective product and 
service marketing. 

Business Drivers 

Offline AI insights derived from network data are valuable in a wide variety of contexts. 
As such, they enable the network operator to better monetize the wealth of network data 
available within its network. 
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Deployment Model 

This use case also assumes that network data are available to create the necessary traffic 
density maps and associations needed for the specific AI application. Data may be 
collected from network elements such as edge routers and gateway elements, control 
and operations systems, as well as application specific functions. This data enables the AI 
system to understand network topology and potentially the context of the data. In some 
cases, specific subscriber information may be used in either aggregated or anonymized 
form or based on explicit subscriber consent.  

Architectural Context 

Figure 8 illustrates an example use case in a service provider network environment.  

 

Figure 8 – Network Architecture for AI Offline Insights 

In many cases, the data collection and analysis function may be shared across many 
different applications, both in real time and offline. 

2.7 AI-Assisted Customer Support and Sales 

Expert systems designed to assist in areas such as customer support, sales and network 
troubleshooting have been available for many years with varying degrees of success.  
However, as AI technology advances, the effectiveness and applicability of these AI 
applications also increases. 

In performing support functions, people tend to use: 
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• Experience/history, which is information and knowledge based on past events. 
• Explicit rules and heuristics, which are simple, efficient, learned or hard-coded 

rules or processes often based on experience.  
• Focused system knowledge to solve problems. 

Successful AI-based expert systems will use ML techniques to reproduce human problem 
solving as applied to these areas. These systems can be used to increase the accuracy, 
speed and effectiveness of support and sales activities by providing people executing the 
support/sales activities with expert information and recommendations. 

Story Highlights 

ML AI-enabled expert systems utilizing network data, subscriber data and domain 
specific rules and knowledge can assist personnel performing sales, support and 
troubleshooting tasks to increase speed and effectiveness in addressing the specific task. 
These systems also can potentially anticipate when customers are experiencing a service 
issue, giving the service provider an opportunity to address the problem prior to 
customer contact.   

Business Drivers 

These systems increase productivity by enabling faster and more effective problem 
resolution at lower costs and with increased end-user satisfaction. 

Deployment Model 

These AI-enabled expert systems can be deployed in isolated task specific systems, as 
well as in broader application/network areas on a national or regional basis. 

Actors 

Key actors associated with this use include: 

• Support and sales personnel utilizing the AI-enabled expert system. 
• End user/customer. 
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2.8 AI-Based Content Processing and Management 

Content curation is an excellent example of how AI-based content processing and 
management systems can be used as part of a network service. Content curation is the 
act of sorting through large amounts of content, both web-based and from content 
libraries, to provide a content index to a user in a meaningful and organized way. The 
process can include recognizing user-relevant patterns associated with content and then 
sorting the content into specific themes for publication. Using advanced AI-based 
content analysis systems, customers can be provided with a personalized content and 
video experience. 

Story Highlights 

Using an AI-based content processing and management system, a service provider can 
search a wide range of web-based content and subscription-based content libraries, to 
sort and prioritize content personalized for a specific user. Content recommendations 
can then be presented to the user for subsequent viewing. 

Business Drivers 

Content curation systems can provide a value-added feature to existing access or 
content subscriptions to provide differentiation and increased customer satisfaction. 
These systems can also drive traffic growth through greater user engagement. 

Deployment Models 

This use case would generally be deployed as a network application with access to broad 
web-based resources and other content libraries. Access to a user profile and viewing 
history (with user consent) would be critical for accurate personalized recommendations. 

Actors 

Key actors associated with this use include: 

• Content users that have opted in to receive personalized recommendations. 
• Service provider(s) providing content recommendations. 
• Content providers. 
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3. AI Architectures and Technologies 
3.1 Network Architecture Aspects of AI 

Network-based AI systems tend to share a common high-level fundamental architecture 
that includes three major components: 

• Data collection and feature extraction. This process is about getting the right data 
in the right timeframe with the ability to derive the right data features to enable 
efficient and accurate cognitive processing in the AI core.   

• An AI core using one or more cognitive analysis technologies such as a deep 
learning neural network. This step may involve making choices regarding the use 
of an AI framework and associated library and tool set to best match the given 
task. Given a framework and library, a model will need to be created and trained 
to respond to the given environment. 

• Output adaptors and/or formaters that take the raw AI output and actualize the 
goal of the specific AI function or module. In some cases, this is a matter of 
applying appropriate data visualization technologies so that human operators 
and administrators can better understand or use the result. In other cases, the 
output may be used to effect automated real-time changes in the network. For 
this situation, appropriate APIs may be required to apply the necessary controls.  
Additionally, orchestrators and policies may be used to implement the end result 
on a given topology constrained by these policies. 

Figure 9 illustrates these steps at a high level and is followed by an in-depth discussion 
of each step and how these components may fit in existing networks. 
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Figure 9 – High Level Structure for Network Based AI Applications 

Data Collection  

Most service provider networks already collect and store large volumes of data 
associated with network operations. This data can be categorized along four basic 
dimensions; traffic-based attributes, network/subscriber state, topology/location and 
time/history. 

Traffic-Based Attributes: 

Packet-traffic-based attributes include raw packet router/switch or link-specific metrics 
such as throughput, packet loss, latency, packet length (short or long), burstiness and 
queue fill. Although more information may be available through deeper packet header 
inspection, the widespread use of TLS/HTTPS on transport flows limits the utility of this 
approach. In addition, it is often impossible to implement deeper inspection at wire 
speeds on modern high speed links, switchs and routers. 

Nevertheless, application-specific attributes may also be available for network flows. 
These attributes can often be aggregated by application class and may be collected 
directly from the application (at either the client or the server) or at an application 
gateway. Probes may also be used to simulate application traffic. Examples of application 
specific attributes may include: 

• Adaptive bit rate/video-streaming-related metrics, and measures of video display 
quality. 
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• File transfer attributes. 
• Interactive communication attributes including mobile network dropped calls, 

and voice or video quality. 

Traffic may also be categorized based on the aggregate of application classes used by a 
subscriber or group of subscribers into subscriber classes. Often, subscriber traffic can be 
identified by address markings or associations with links using various network 
segmentation mechanisms (e.g., VPNs). In some cases, subscriber classes can be mapped 
to SLA parameters, for example, associated with an enterprise service. 

 

Figure 10 – Dimensions of Data for Network Based AI 

Network/Subscriber State 

The network is rich with data associated with the performance of the network 
infrastructure, as well as subscriber-specific state that the network uses to manage each 
subscriber session. This state information ranges from data center compute and storage 
metrics to 5G control plane properties associated with subscriber sessions. 

Topology/Location 

Network topology is a very important class of data for most network-related use cases.  
Although much of the network topology is fixed as [a?] function of fixed assets, network 
operators are constantly adding capacity, resulting in topology changes. In addition, the 
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introduction of SDN and other automated configuration and routing tools can effectively 
modify network topology in near real time. For mobile networks, the UE’s location is an 
ever-changing variable, and the widespread use of nomadic devices (e.g., Wi-Fi tablets) 
adds to this dynamic transport environment. 

History/Time 

At each point in the network topology, the packet-related traffic attributes will vary in 
time, creating a history of activity that can be useful in predicting and managing traffic 
flows. Traffic is often time-dependent as evident with the existance of busy hour and 
busy day metrics. 

The AI Congnitive Processing 

Network AI uses cases are generally shown in isolation, with only one AI processing core 
(e.g., neural network instance). But in practice, many different AI processing modules, 
each potentially utilizing different AI technologies, may exist, working in concert. 

 

 

Figure 11 – Distributed AI Processing in Network Applications 

For example, even within a single AI use case, AI processing could be used in each step 
of the process for specific functions: 
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• AI could be used in the feature extraction process to better compress large 
amounts of time-dependent data across a wide network topology. This would 
create more descriptive and efficient features to input into one or more AI core 
processing functions supporting one or more different use cases. For instance, a 
neural network utilizing unsupervised learning capabilities could be used to 
uncover recurring patterns in network data that may not otherwise be clear. 

• Even within the AI core processing function, a number of different AI and ML 
technologies may be used together to increase the accuracy and better clarify the 
rationale of an AI recommendation. In this case, a specific AI task could be 
undertaken by many different AI modules each looking at different data/features 
using different models or technologies/algorithms so that the final 
recommendation can be associated with some probability of accuracy.  
Additionally, some of the AI core processing functions could be used to create 
context and rationale for the final recommendation, providing a historical record 
for later post-mortem analysis in the case of failures. Given the wealth of real-
time network performance and quality metrics available in most networks, 
reinforcement learning systems can often be utilized to dynamically adapt to 
changing network and traffic conditions. 

• When the AI use case involves automated actions, these actions, as they are 
applied to the network, may invoke configuration or service management 
orchestration functions. These functions may use AI technologies to implement 
the complex sequence of steps required to robustly deploy network changes. In 
many cases, rules-based approaches provide a means to execute recommended 
actions with some level of deterministic control to help ensure overall system 
integrity. 

Output Adaptors and/or Formatters 

AI recommendations from core AI processing functions typically require additional 
formatting, presentation or orchestration functions to achieve the desired output. As 
noted above, network/service orchestration functions may require AI functions to 
robustly deploy network changes. In addition, rules engines may be employed to enforce 
network policies that may be used to constrain any AI initiated actions to satisfy 
customer SLAs, as well as regulatory requirements that may be impacted by automated 
network changes. For example, network facilities supporting critical infrastructure (e.g., 
related to IoT access) emergency services or in support of public safety need to have 
priority regardless of traffic metrics. 
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Figure 12 – Control Loops in AI Applications 

In a network with multiple AI use cases and/or multiple AI processing functions within a 
use case, care must be taken to ensure network stability. AI network applications are 
often deployed in closed-loop systems. The wealth of network performance data 
available often means that AI functions can be deployed using reinforcement learning 
techniques to dynamically optimize system performance. However, multiple feedback 
loops can interfere with each other, causing instability, if care is not taken to ensure that 
the loop-time constants for nested loops are properly managed. Generally speaking, the 
inner/shorter loops can operate at faster speeds, while longer outer loops need to 
operate at longer time constants to ensure the network has stabilized before making 
new changes. 

3.2 AI Technology Development and Management 

The inherent complexity of AI solutions has led to the creation of many different open 
source and commercial software libraries and frameworks to enable AI developers to 
more efficiently build solutions. These frameworks provide APIs and software libraries to 
allow developers to leverage common technology functions. Some of the frameworks 
also include development process tools to better manage AI projects. 
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In network operator-based telecommunications systems, AI/ML systems place unique 
management requirements on the existing network management and operations 
environment. To address these challenges, AT&T developed and open-sourced a 
platform called Acumos. This platform employs the open source collaboration model to 
achieve flexibility and create a highly adaptable industry-wide framework for building, 
training, integrating and deploying ML solutions.  

To simplify the development process and make it understandable to a wide audience of 
developers, Acumos breaks the development flow into four distinct steps:  

• First, models are onboarded to an Acumos-compliant platform and packaged as 
distinct microservices with a component blueprint describing the microservice 
API and dependencies.  

• Second, the model is packaged into a training application that can be deployed 
to an appropriate training environment from which data can be acquired and 
cached for later retraining, if needed.  

• Third, a reference to the trained model, called a predictor, is published into a 
catalog that can be shared across a community where other developers can find 
it, discuss it, review it and create a full solution by using the predictor and 
“chaining” to other components employing the predictor. This enables them to 
make decisions while providing many of the more conventional capabilities that 
are required to act on them.  

• Finally, the entire solution is packed into a Docker container that can be deployed 
to an appropriate runtime environment where it can be executed. 

Some of the components in this packaged solution are used to access data and 
implement functionality. Others can be used to transfer new data records to the Acumos 
platform where they can be added to the cached datasets and used for additional 
training in a continuous learning process.  

Figure 13 illustrates these four distinct stages of the development and deployment 
process.  

 



 

40 
 

 

Figure 13 – Acumos AI Management Architecture 

The reasons for approaching the problem in this way are to separate the very specialized 
functions of model design and data management from the complexities of service 
development and application lifecycle. Keeping these aspects of AI development distinct 
makes the process quicker, more reliable and open to a much larger community of users.  

Step 1 – Creating and Onboarding New AI Models 

As illustrated in the upper left quadrant of figure 13, Acumos does not include a 
specialized platform for developing AI solutions aimed at data scientists. There are 
already many excellent development tools for building neural nets, classifiers, clustering 
algorithms and other types of AI components. But these tools do not make it easy to 
integrate with other components. Either the tools are tied to a particular execution 
platform, such as a specific cloud service, or they are very specialized to the needs of the 
data scientist and difficult for the average software developer to use. Each tool is 
implemented around some language and a specific set of compatible libraries. All these 
things narrow the audience for any tool and limit access to previous work by requiring 
compatible components to adhere to some standard. 

Acumos is a way to harmonize solutions across the full range of existing and future AI 
tools and technologies. Initially, Acumos supports such toolkits as SciKit Learn, 
TensorFlow, H2O and RCloud, and various programing languages. A portable Acumos 
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library packages the products of all these tools in such a way that they are all 
interoperable. By leveraging an open framework, for which all the source code is readily 
available and adaptable, the expectation is that the number of compatible SDKs and 
languages will grow over time as the Acumos community grows. By wrapping programs 
in a container and making each toolkit and language interoperable with the others, the 
range of available, compatible solutions that Acumos can use is large and will grow 
further over time. 

For the foreseeable future, it is likely that no single, all-purpose AI hardware platform or 
development kit will dominate software design for ML solutions. Each problem and each 
approach is likely to require a different set of tools. Therefore, a platform that 
harmonizes many solutions by packaging them into interoperable microservices will be 
the best way to make sure that solutions will be useful for any target development 
community. Furthermore, because the field is changing rapidly, the future will include a 
wide array of tools that do not currently exist and probably have not yet been conceived. 
So any attempt to standardize on one approach or toolkit at this stage is doomed to 
failure. Instead, a tool that focuses on interoperability will help to keep today’s solutions 
relevant for future applications. 

Step 2 – Training the Basic AI Model 

What is common across different AI platforms and tools is this new model of software 
development in which code must be enhanced through training. ML enables a wide 
variety of AI technologies, and about 60 percent of the 2016 AI investment has gone to 
the ML development (McKinsey Global Institute, 2017). The application of ML to business 
problems depends on the ability to train software by providing specialized data sets that 
represent a variety of conditions for the model to identify and act upon. The ability to 
quickly and reliably train software on any dataset is a component of every ML problem.  

Because all ML is data-driven, algorithms based on ML technologies are substantially 
reusable in ways that prior generations of software were not. Conventional software 
tools are designed to address the problems of editing, inspecting and analyzing code to 
simplify debugging and reprogramming.   

In ML problems, the process is more about taking a good basic algorithm and applying it 
to a new dataset to solve a new problem without developing any code. But to train the 
algorithm, it must be executed in an environment where the training data are available. 
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The ability to securely exchange, retrain and license a general-purpose solution is a key 
part of a commercial ML platform. Although entirely academic problems can be trained 
in a relatively isolated development environment into which the data are securely 
imported, real-world training requires moving the model to an environment where data 
can be conveniently and rapidly acquired. In other cases, such as robotics, crowd sourced 
datasets or mobile applications, for example, the data may only be available in some very 
specific runtime environment. 

Acumos takes these packaged models and moves them from a secure development 
machine to a secure runtime and exposes the model to training data without the need 
for a developer to change the model in any way. This is done using custom training 
clients, data access and data caching tools, making it easy to assemble a specialized 
training application for each ML model. Acumos provides the training and testing 
interface needed to turn a basic model into a predictor that has been trained to perform 
a specific function. 

Step 3 – Publishing Models to a Catalog 

Data-driven ML models can be trained to recognize a pattern and to classify patterns 
reliably, but they cannot learn to do different things, once trained. Therefore, the third 
goal of a common AI development platform is making it easy to connect AI algorithms 
with different adapters that can apply the knowledge acquired in a training process to 
specific applications. For instance, when building a corporate access control system, it 
may be a simple matter to train a ML algorithm to recognize an employee of a company 
from personnel records. But before that model can be used to open and close doors, an 
adapter is required to actuate a lock when a known employee approaches the building 
entrance. 

To build a working system, it is necessary that developers locate components that 
implement specific functions and evaluate what those components do and how they 
interface to external systems and data sources. Acumos does this by creating catalogs of 
useful functionality that can be searched and explored, reviewed and rated. Once a 
model is identified in a catalog, it can be acquired from the original developer and 
employed as a component in a complete solution. It is the catalog that connects a 
component developer with a population of potential users and facilitates that 
acquisition, transfer and updating of ML models. 
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Acumos provides a design studio that makes it easy to chain together a series of 
components by connecting data sources to model-based predictors and then connecting 
those predictors to adapters that operate equipment or provide other common functions 
like filling in spreadsheets or performing any developer-defined steps to create a simple 
and efficient decision tree. Such a design tool is not well suited to developing the actual 
ML algorithm. It is not intended to handle loops and recursive operations, but it is a tool 
that makes it extremely easy to integrate well-defined and independent microservices 
into powerful IT solutions. 

Step 4 - Deploying Finished Solutions to a Runtime Environment 

The final step in building a working AI solution, as shown in Figure 13, is to deploy a 
working application into a runtime system. In general, AI solutions will not run best in a 
centralized environment. For instance, it is hard to imagine an autonomous vehicle 
making an HTTP request to a central brain to make real-time decisions such as avoiding 
pedestrians. In most cases, a good AI solution will have to be packaged and delivered to 
a runtime system where it will actually be used. Acumos packages solutions into Docker 
image files, which can then be deployed into any Docker environment and managed 
through a set of container management tools, such as Kubernetes. Docker containers are 
a useful tool for deploying software, but other packaging and management systems exist 
today and no doubt others will proliferate over time. The basic design of packaging 
solutions and deploying them will be adapted to any container-like mechanism.  

Acumos provides tools to package any set of components, including predictors, adapters 
and other microservices, as needed, to any runtime environment and to create a 
compatible, deployable image file. Such image files can be deployed to Azure, AWS or 
other popular cloud services, to any corporate data center or to any real-time 
environment as long as it supports Docker or other supported lifecycle management 
tool. The adaptive and programmable deployment interface allows Acumos to package 
and transfer runtime bundles to a wide array of external systems. 

3.3 Network Data Collection and Analytics 

Data Exposure Needs for AI 

AI is data-driven. As such, AI technologies have a need for increasingly more 
sophisticated and granular data exposure capabilities with well-defined data definitions. 
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By exposing more data features, AI can more easily differentiate data patterns to more 
accurately characterize these patterns and thus provide better recommendations and 
decisions. 

3GPP Data Exposure Capabilities 

Data collection and analytics functionality is not entirely new for 3GPP. However, with the 
current focus on 5G, the topic has gotten a new impetus within 3GPP. In its specification 
on 5G System Architecture (TS 23.501), 3GPP has defined a new operator managed 
network function called the network data analytics function (NWDAF). In Release 15, the 
scope of NWDAF functionality was limited to providing analytics on slice-level load 
information to policy and slice selection functions in the 5G core network. Furthermore, 
how the NWDAF acquires the data to be analyzed was not defined.  

For Release 16, a new study on the topic has been started to enhance this functionality 
by first studying and then specifying how to collect data from the network and how to 
feed data analytics back into the network functions for their use. New data analytics use 
cases are being looked at. Discussions on the topic are being captured in Technical 
Report TR 23.791. The results of the study are expected to result in normative 
specifications. This would increase the role of use of data analytics within the 3GPP 
networks. As of publication of this document, the study is still ongoing. This section 
provides a snapshot of status of work as of August 2018. 

Figure 14 shows the proposed interaction between the NWDAF and various other 
network entities. The possible sources of input data include other network functions 
(NFs), application functions (AFs), OAM systems and network data repositories. The key 
recipient of results of analytics are NFs and AFs. However, use of the analytics output by 
OAM systems and its storage in data repositories is not ruled out. 

 



 

45 
 

 

Figure 14 – 3GPP NWDAF Data Collection and Analytics Architecture 

As part of the study, 3GPP has documented several use cases. Based on these use cases, 
key issues are being defined. Solutions for these key issues are currently being solicited 
from contributing companies. At the end of the study, agreed solutions will lead to a 
normative specification.  

Based on the use cases, the following is a summary of two categories of key issues 
identified so far. 

Key issues requiring a general solution applicable to any use case: 

• Interactions of NWDAF with NFs and AFs. 
o How to expose data analytics information to NFs and AFs. 
o How to collect data for analytics from NFs and AFs. 

• Interactions of NWDAF with OAM systems. 

Key issues requiring a solution specific to use cases: 

• Use of NWDAF for assistance in traffic routing e.g. based on location analytics, 
congestion analytics, etc. 
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• Use of NWDAF for network performance prediction. 
• Use of NWDAF for QoS provisioning and adjustment. 
• Use of NWDAF in selection of NF instances. 
• Use of NWDAF in managing background data transfer. 
• Use of NWDAF in management of massive IoT infrastructure. 
• Use of NWDAF in customizing mobility management. 

The initial set of solutions proposed so far address some of these key issues. These 
solutions can be summarized as:  

• Release 15 service-based interfaces that use subscribe/publish and 
request/response can be used for interactions between an NWDAF and NFs/AFs. 

• Service experience data can be provided to the NWDAF by the AF, and the 
NWDAF in turn can provision the policy function with new QoS information so 
that QoS can be adjusted for the service. 

• NWDAF can collect UE mobility-related information, such as from OAM systems. 
It provides output of analytics on mobility data to the PCF, which upon further 
processing sends it to AMF. The AMF uses this information for managing thr 
registration area for the UE and possibly for paging the UE. 

• NWDAF collects paging failure information from NFs by subscribing to the event. 
It analyzes the information to help predict paging failures, for example, at certain 
areas and/or at certain times and informs the network if the likelihood of paging 
failure exceeds a threshold.   

Additional solutions are expected to be added in later half of 2018, with the study 
targeted for completion by the end of 2018. While the NWDAF is expected to use ML/ AI 
algorithms internally for analytics purposes, these algorithms are not going to be 
specified by 3GPP and will be left to implementation. 

3GPP RAN-Related Capabilities 

In addition to core network efforts related the NWDAF, 3GPP is embarking on a study of 
RAN-centric data collection and utilization for the 5G New Radio (NR) and LTE. This work 
will investigate the uses and benefits of RAN-centric data utilization, providing potential 
enhancements to a variety of SON features and other RAN optimizations while considering 
new 5G capabilities. 
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Additionally, 3GPP is identifying the impact of necessary standards needed for data 
collection and utilization for the defined use cases and scenarios, including: 

• Identification of relevant measurement quantities, events and faults for collection 
and utilization.  

• New procedures for configuration and collection of UE measurements, RAN node 
measurements and signaling procedures for distributed and central analysis. 

• New procedures and information exchange required for the different use cases. 

If deemed necessary, 3GPP will also investigate the benefits and feasibility of introducing 
a logical entity/function for RAN-centric data collection and utilization. 

3.4 Distributed AI and Online Learning 

The distributed nature of AI for networking lends itself naturally to distributed AI 
solutions. Edge computation enables both low-latency, high-value responses by 
executing and responding rapidly to local data without the need for real-time 
communications to data centers and cloud-based AI servers. This AI-enabled edge can 
also dramatically reduce network bandwidth by enabling long-distance communication 
with centralized servers for selected training purposes, features of interest and anomalies 
rather than high-bandwidth raw data streams. Some examples of edge-based AI include: 

• AI-based agents on the device: Smartphone-based agents will increasingly 
understand who you are, what you want, when you want it, how you want it done 
and execute tasks upon your authority. Specific applications include tasks such as 
purchase recommendations to automatically managing connected home 
conditions prior to your arrival. 

• User authentication: Security technology combined with ML, biometrics and 
user behavior can supplement current authentication techniques to provide a 
more secure experience. For example, smartphones can capture subtle attributes 
of user behavior to better identify the user. Alternatively, facial recognition can be 
used to better authenticate access to your bank account. 

• Emotion recognition: Smartphones can use sensors to detect, analyze and 
respond to people's emotional states and moods. For example, car manufacturers 
could use an embedded camera to understand a driver's physical condition or 
gauge fatigue levels to increase safety. 
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• Natural-language applications: Continuous training and deep learning will 
improve the accuracy of speech recognition. This might enable smartphone to 
use context while better understanding the user's specific intentions. 

• Augmented reality (AR) and AI vision applications. 
• Content detection and filtering: Restricted or unwanted content can be 

automatically detected, flagged and alarmed (via notifications). 
• Photography: Smartphones cameras could automatically produce better photos 

based on a user's individual preferences by adjusting area specific exposure, color 
temperature and other factors. 

• Audio triggered event detection: The smartphone’s microphone could be used 
to monitor surrounding sounds and via AI, trained to alert the user based on 
specific audio triggers (e.g., last boarding call for Flight XYZ). 

• Device management: ML can improve device performance and battery life by 
disabling used applications and dynamically managing notification services. 

As on-device processing capabilities increase, these device-centric AI applications are 
becoming more prevalent. In the past, cloud processing was required for the above 
referenced edge applications. Increasingly, new devices such as smartphones and drones 
are now equipped to run compute-intensive AI operations. 

Edge AI processing provides faster user response times (no latency impacts for accessing 
the cloud) and can provide increased reliability because the AI application will work even 
if data connection speeds are challenged. Edge computation can also be used with 
distributed online learning that enables the global system to rapidly learn and adapt to 
data streams. Leveraging online distributed learning has the potential of solving many of 
today’s privacy concerns by never requiring centralization of the private data containing 
streams. At some point, this privacy preserving aspect can be enhanced with 
homomorphic encryption and differential privacy techniques, thus eliminating, from an 
infrastructure perspective, the possibility of privacy-related catastrophic compromises. 

4. Network Requirements in Support of AI 
4.1 Required Capabilities 

The use cases outlined in section 2 point to two broad needs regarding network 
capabilities: data exposure and APIs/network controls. 
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Almost all of the use cases assume the availability of comprehensive and granular data 
exposure capabilities with well-defined data definitions. Although network data exposure 
has been in the spotlight for several years given the industry interest in network data 
analytics, the use of this data for potentially near-real-time network control presents new 
challenges. In addition, AI/ML data exposure needs present new requirements for data 
granularity and timing. Specific exposure capabilities will be use-case-dependent.  As 
such, as the network AI situation matures, it will become clearer as to specific network 
data exposure needs and gaps. 

In addition, selected AI/ML use cases utilize network APIs and other control interfaces to 
enable automated network management. As with data exposure, the specific APIs and 
control interfaces needed depend on the use case deployment scenario. 

4.2 Current Standardization Activities 

Most telecommunications industry standards bodies have ongoing efforts considering 
standardization needs for AI/ML technologies. This work tends to segment into three 
distinct categories: 

• Efforts in measuring and assessing AI/ML technologies to ensure that systems are 
reliable, unbiased, explainable and scalable. 

• Efforts to ensure privacy of both the data available to AI systems as well as AI 
results which may correlate external data to personal information (e.g., facial 
recognition systems that attempt to provide insights on personal preferences). 

• Efforts to ensure that systems surrounding the core AI/ML processing can provide 
sufficient data exposure interfaces and, where needed, relevant APIs to effect 
network controls. 

The first category above related to the measurement and assessment of AI/ML 
technologies is focused on providing controlled access to select data repositories. As a 
result, AI developers can train complex and never-before-solved AI solutions in an 
expanding number of domains. In addition, efforts are underway to develop AI 
evaluation methodologies and standard testing protocols. 

The domain of privacy is yet unresolved. Serious privacy concerns exist regarding use of 
facial recognition systems, recommendation systems and other data analysis and 
tracking systems that have the potential to publicly avail personal attributes and 
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preferences that many people prefer to keep private. This domain also intersects with 
public policy as these privacy concerns overlap with existing privacy regulations and may 
invoke new regulations directly targeted toward AI/ML applications.  

Network applications of AI/ML will generally leverage network exposure and API 
capabilities.  In many cases, both aspects can be worked independently of AI/ML and 
often serve a broader scope within the network management and operations domain. 

For example, as noted in section 3.3, 3GPP is addressing the need for standardized data 
exposure technologies in 5G networks through the creation and definition of a new 
network function called NWDAF. This function is defined in 3GPP TR 23.501 with 
applicable use cases in TR 23.791. The NWDAF system will be critical to many 5G use 
cases regardless of whether AI/ML technologies are used. In addition, 3GPP is embarking 
on a study of RAN-centric data collection and utilization for 5G NR and LTE. 

Similarly, many of the APIs and control points usable by network AI/ML systems are being 
worked independently as part of the network evolution toward NFV and SDN. 

5. Conclusion 

This report looks more closely at how AI and ML technologies can be leveraged to 
address the pressing challenges facing the ICT industry today. AI is generally considered 
to be intelligence exhibited by machines or computational systems that perceive their 
environment and take actions to satisfy an intent. AI applications span a wide range of 
options from: 

• Assisted intelligence comprised of targeted/narrow expert systems which help 
people to perform tasks faster and more accurately to: 

• Autonomous intelligence systems with fully automated decision-making 
processes coupled with ML to perform a narrow task without human intervention 
while adapting to changing conditions. 

AI can be utilized to better realize automated intent-based systems within the network.  

The application of AI to network systems may require fundamentally new processes at 
each stage of the application lifecycle. In addition, although AI systems are excellent for 
applying cognitive processing to complex systems, errors will occur. In network 
applications where high levels of reliability and service availability are required, care must 
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be taken to ensure protective mechanisms are in place to mitigate and manage 
autonomous actions driven by AI systems. 

This report documents a wide variety of network-related AI use cases including: 

• Network anomaly detection. 
• Network security. 
• RAN Optimization. 
• Dynamic traffic and capacity management. 
• Network resiliency and self-healing. 
• AI and orchestrated management. 
• AI-based subscriber insights. 
• AI-assisted customer support and sales. 
• AI-based content processing and management. 

These use cases often require robust network data exposure capabilities and network 
APIs (when autonomous actions are required). AI/ML enables new ways to understand 
and use data, renewing the need for timely access to more unique data. This data can be 
categorized along four basic dimensions: traffic-based attributes, network/subscriber 
state, topology/location and time/history. 3GPP has initiated standards work on new 
data collection architectures and use cases. AI/ML-based automation will also require 
better network APIs (e.g., making good use of NFV/SDN infrastructure). 

These use cases also expose the likelihood of multiple AI closed-loop systems interacting 
with each other. Loops created with AI may operate at different time scales and need to 
be well designed from a broad network perspective to prevent network instability 
associated with interacting feedback loops. 

Edge computation enables both low-latency, high-value responses by using AI-driven 
applications to use local data without the need for real-time communications to data 
centers and cloud-based AI servers. An AI-enabled edge can dramatically reduce 
network bandwidth, decrease user response times and potentially increase application 
reliability. Edge computation can also be used to enable distributed online learning, 
which has the potential of solving many of today’s privacy concerns because private data 
need not be sent to the centralized processing functions for ML purposes. 
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Finally, it seems clear given the wealth of AI/ML network centric use cases that this 
technology can provide significant value to network related applications, services and 
operations. 
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