Overview
Automated Certificate Management (ACME) Protocol

IP-NNI Task Force
Mary Barnes – iconectiv

August 2, 2017
ACME Overview

• ACME is a protocol being developed in IETF for Automated Certificate Management.

• ACME defines an extensible framework for automating the issuance and validation procedures for certificates:

 • Allows servers to obtain certificates without manual user interaction

• ACME protocol specifications:

 • Core protocol: draft-ietf-acme-acme

 • CAA extensions for more granular CA-specific policies: draft-ietf-acme-caa

 • Identifiers and Challenges for VoIP Service Providers: draft-ietf-acme-service-provider

 • Identifiers and Challenges for Telephone numbers: draft-ietf-acme-telephone

 • Short-term, automatically renewed certificates: https://datatracker.ietf.org/doc/draft-sheffer-acme-star-request/
ACME Protocol model

- ACME uses HTTPS as a transport for Javascript Object Notation (JSON) Web Signature (JWS) objects (effectively a RESTful API):
 - ACME server runs at a Certification Authority (CA) and responds to client’s actions if the client is authorized.
 - ACME client uses the protocol to request certificate management actions.
 - ACME client is represented by an “account key pair”.
 - ACME client uses the private key to sign all messages to the server.
 - ACME server uses public to verify the authenticity and integrity of messages from the client.
• ACME defines the following resource objects for representing information:

 - Directory object: contains URIs for each ACME operation
 - Account object: metadata associated with account key pair
 - Order object: represents a client’s request for a certificate – contains information about the requested certificate, the server’s requirements and any (URL for) certificates (certificate resource) that have been issued.
 - Authorization object: contains the “challenges” (challenge resource) for identifier validation
 - Challenge resource: represents the challenge to prove control of the identifier
 - Certificate resource: represents the issued certificates
ACME Protocol Functions

- ACME uses different URLs (resources) for different management functions:
 - New nonce
 - New Account
 - New Order
 - New Authorization
 - Revoke Certificate
 - Key change

- A single Directory URL is configured in client in order to get the Directory object containing the above URLs.
ACME Protocol Resource States

• Each resource object has a status field that reflects the state of the object and is used by the client and server to effect changes such as:

• ACME server sets the status to “valid” in the Authorization object to indicate that the requestor of the certificate has been validated.

• In the case of challenge/response, ACME client periodically GETs the Authorization object to determine if status is “valid”

• ACME client sets the status to “deactivated” in the Account object to deactivate an account
ACME Protocol - Status

• ACME charter updated to include identifiers and challenges for TNs and Service Provider Codes in June 2017.

• Protocol implementation is well underway:

 • 46 ACME Client implementations with 14 different libraries available

 • Entrust has released a Beta version of an ACME server.

 • 12 ACME projects integrated with Let’s Encrypt
Applying ACME to SHAKEN

- SHAKEN usage of ACME defines a new mechanism for the identifier validation challenge.
- SHAKEN service provider validation is based on a token mechanism.
- The token is a JWT (note this is different than the JWT included in the PASSporT) issued by the STI-PA.
- Described in draft-ietf-acme-service-provider.