Overview
Automated Certificate Management (ACME) Protocol

IP-NNI Task Force
Mary Barnes - iconectiv
ACME Overview

• ACME is a protocol being developed in IETF for Automated Certificate Management.

• ACME defines an extensible framework for automating the issuance and validation procedures for certificates:
 - Allows servers to obtain certificates without manual user interaction

• ACME protocol specifications:
 - Core protocol: draft-ietf-acme-acme
 - CAA extensions for more granular CA-specific policies: draft-ietf-acme-caa
 - Identifiers and Challenges for Telephone numbers: draft-peterson-acme-telephone
ACME Protocol model

- ACME uses HTTPS as a transport for Javascript Object Notation (JSON) Web Signature (JWS) objects (effectively a RESTful API):
 - ACME server runs at a Certification Authority (CA) and responds to client’s actions if the client is authorized.
 - ACME client uses the protocol to request certificate management actions.
 - ACME client is represented by an “account key pair”.
 - ACME client uses the private key to sign all messages to the server.
 - ACME server uses public to verify the authenticity and integrity of messages from the client.
ACME Protocol Resources

- ACME defines the following resource objects for representing information:
 - Directory object: contains URIs for each ACME operation
 - Registration object: metadata associated with account key pair
 - Application object: represents a client’s request for a certificate – contains information about the requested certificate, the server’s requirements and any (URL for) certificates (certificate resource) that have been issued.
 - Authorization object: contains the “challenges” (challenge resource) for identifier validation
 - Challenge resource: represents the challenge to prove control of the identifier
 - Certificate resource: represents the issued certificates
ACME Protocol Functions

• ACME uses different URLs (resources) for different management functions:
 - New nonce
 - New Registration
 - New Application
 - New Authorization
 - Revoke Certificate
 - Key change

• A single Directory URL is configured in client in order to get the Directory object containing the above URLs.
ACME Protocol Resource States

- Each resource object has a status field that reflects the state of the object and is used by the client and server to effect changes such as:

 - ACME server sets the status to “valid” in the Authorization object to indicate that the requestor of the certificate has been validated.

 - In the case of challenge/response, ACME client periodically GETs the Authorization object to determine if status is “valid”

 - ACME client sets the status to “deactivated” in the Registration object to deactivate an account
ACME Protocol - Status

- Proposal to re-charter to consider use of ACME for TNs and SPIDs in early 2017.

- Protocol implementation is well underway:
 - 46 ACME Client implementations with 14 different libraries available
 - Entrust has released a Beta version of an ACME server.
 - 12 ACME projects integrated with Let’s Encrypt
Applying ACME to SHAKEN

• SHAKEN usage of ACME defines a new mechanism for the identifier validation challenge.

• SHAKEN service provider validation is based on a token mechanism.

• The protocol used to distribute the token is OUATH (another IETF developed protocol).

 • Uses a JWT (note this is different than theJWT included in the PASSporT).
Backup
ACME vs CMP

1) Encoding:
 • CMP is based on ASN.1.
 • ACME uses JSON so it's faster and easier to code and debug.

2) Deployment:
 • CMP has been deployed primarily in an enterprise environment.
 • ACME is intended for the open Internet (while still appropriate for a service provider network).

3) ACME includes provisions for verifying that an applicant for a certificate legitimately holds the identifiers they want to appear in the certificate.