SHAKEN - Secure Handling of Asserted information using toKENs

August 2015
Current Status

• The current STIR IETF working group is focused on 4474bis which defines a signing mechanism for validating a calling information between two parties and form a level of trust that the caller is who he says who he is.

• The issue is that current STIR discussion scope is large (beyond current world of provider peering agreements), incorporates a lot of concepts into many new SIP headers that aren’t very well understood and requires a certificate management infrastructure to be in place, whether following a proposed draft for a certificate authority with OCSP, or the landscape team proposal as part of a registry.

• This will take time and will take time for providers to understand how to best deploy into their networks.

• Further, something has been forgotten in the process is that we cannot implement a silver bullet, we are looking for indicators that allow for better informed decisions on whether a call is potentially fraudulent.
Overview

• Use of a standard, widely-used token (JWT) that is extensible and incorporates the ability to evolve signing mechanisms, crypto algorithms and other characteristics, if necessary.

• Separation of concerns with SIP and header details versus validation of asserted information via token

 • From implementation point of view, SIP state machine processing and token creation/validation should be able to be separable

 • Simplify the dependence, assert telephone number or identity information vs. SIP headers.

• Similar framework may also be used for wholesale/transit to customer validation or legitimate caller-id spoofing validation
JWT/JWS Token

- Use the very straight forward, efficient and widely used JSON Web Token (JWT) RFC 7519 and JSON Web Signature (JWS) RFC 7515.

- JWT/JWS provides flexibility in terms of signing of the information

- JWT is a standard URL friendly string that is of the form “header . claim . signature”

- claim is the asserted information in JSON format. In this case, would be the calling number (could be easily included to incorporate calling name, etc)

- header and claim are base64 encoded, signature can be a digital signature (asymmetric key) or HMAC (symmetric key) of the claim
Asserted Information Token (AIT) - Basic Call Flow

- Originate Call on UE, TAS (telephone application server) applies AIT, signed by private key, in INVITE for service provider managed UEs.

- Terminating network receives INVITE, uses AIT validation to perform service provider specific CVT (Call Validation Treatment) including both:
 - negative treatment - e.g. to block/forward to VM call
 - positive treatment - e.g. apply “verified” flag and/or validation confidence flag
Evolution of AIT Signature Validation Ecosystem

- Use simple asymmetric public/private key pairs (i.e. X.509 certificates) with limited certificate chain (i.e. provider certificate only signed by root directly)
 - X.509 framework provides more direct evolutionary path and incorporate trust anchor and chain (Could start without root signing initially, if necessary.)
 - Trust anchor is mechanism to validate authority to sign AIT, particularly as ecosystem evolve beyond direct peering relationships.
- Root signing request services could start within industry or more centralized players or both (e.g. NANPA, Cablelabs/NetworkFX, Peer providers?) Very low volume service (1000s requests per year?).
- Assume domain certificates will be wildcard for domain chosen by provider (e.g. *.pstn.example.com) until a future point that per-TN certificates is even considered, but in either case provides evolutionary path.
- Distribution of Public Key Certificates via three mechanisms:
 - Could be passed directly in peering agreements initially
 - DNS resource record in corresponding domain (DNSKEY RR)
 - HTTP via RFC 5785 based Well-Know Uniform Resource Identifiers (URIs)
AIT as a Assertion validator in SIP

- Two proposals on table:
 - AIT could be used as a parameter of P-Asserted-ID header e.g.
 - `sip:+1215551212@ims.example.net; ait=eyJ0eXAiOiJKV1QiLA0KICJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJqb2UiLA0KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ.dBjftJeZ4CVP-mB92K27uU1p1r_wWiFWFOEjXk`
 - AIT could be passed as new header
 - Identity?
 - New header?